
110.421 DYNAMICAL SYSTEMS

Week 1 Lecture 2 Notes

1. Some Simple Dynamics

To motivate our first discussion and set the playing field for a discussion of some simple
dynamical systems, let’s recall some general theory of first-order autonomous ODEs in one
dimension (we call such an ODE, along with its initial value, an Initial Value Problem (IVP):
Let

ẋ = f(x), x(0) = x0

be such an IVP where the function f(x) is a differentiable function on all of R. From any
standard course in differential equations, this means that solutions will exist and be uniquely
defined for all values of t ∈ R near t = 0 and for all values of x0 ∈ R. Recall that the general
solution of this ODE will be a 1-parameter family of functions x(t) parameterized by x0. In
reality, one would first use some sort of integrate technique (as best as one can; remember
this ODE is always separable, although 1

f(x) may not be easy to integrate) to find x(t)
parameterized by some constant of integration C. Then one would solve for the value of C
given a value of x0. Indeed, one could solve generally for C as a function of x0, and then
substitute this into the general solution, to get

x(t, x0) ∶ R ×R→ R
as the evolution. Then, for each choice of x0, we would get a function xx0(t) ∶ R → R as the
particular solution to the IVP. We will use the notation with a subscript for x0 to accentuate
that the role of x0 is that of a parameter. Specifying a value means solving the IVP for that
value of x0. Leaving x0 unspecified means that we are looking for a particular solution at a
fixed value of x0. The resulting graph of xx0(t) would “live” in the tx-plane as a curve (the
trajectory) passing through the point (x0,0). Graphing a bunch of representative trajectories
gives a good idea of what the evolution looks like. You did this in your differential equations
course when you created phase portraits.

Example 1. Let ẋ = kx, with k ∈ R a constant. Here, a general solution to the ODE is given
by x(t) = Cekt. If, instead, we were given the IVP ẋ = kx, x(0) = x0, the particular solution
would be x(t) = x0ekt. The trajectories would look like graphs of standard exponential
functions (as long as k /= 0) in the tx-plane. Below in Figure 1 are the three cases which look
substantially different from each other: When k > 0, k = 0, and k > 0.

Recall in higher dimensions, ẋ = f(x), we typically do not graph solutions explicitly as func-

tions of t. Rather, we use the t-parameterization of solutions x(t) = [x1(t) x2(t) ⋯ xn(t)]T
to trace out a curve directly in the x-space. This space, whose coordinates are the set of
dependent variables x1, x2, . . . , xn, is called the phase-space (sometimes the tx-plane from
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Figure 1. Sample solutions for xx0(t) = x0ekt.

above, or more generally the tx-space is called the trajectory space to mark the distinction).
The diagrams in the plane that correspond to linear systems with a saddle at the origin, or a
spiral sink are examples of phase planes with representative trajectories. Often, particularly
in phase space, trajectories are also called orbits.

Even for autonomous ODEs in one-dependent variable, we played with a schematic di-
agram called a phase-line to give a qualitative description of the “motion” of solutions to
ẋ = f(x).

Example 2. The phase lines for ẋ = kx for the three cases in the figure are below the graphs.
The proper way to think of these lines is as simply a copy of the vertical axis (the x-axis
in this case) in each of the graphs, marking the equilibrium solutions as special points, and
indicating the direction of the x-variable change as t increases. All relevant information
about the long-term behavior is encoded in these phase lines. In fact, these lines ARE the
1-dimensional phase spaces of the ODE, and the arrows simply indicate the direction of the
parameterized x(t) inside the line. It is hard to actually see the parameterized curves, since
they all run over the top of each other. This is why we graph solutions in 1-variable ODEs
using t explicitly, while for ODEs in two or more dependent variables, we graph using t
implicitly, as the coordinate directly ON the curve in the phase space.

Again, for ẋ = f(x), x(0) = x0, the general solution x(t, x0) ∶ R ×R → R is a 1-parameter
family of solutions, written as xx0(t), parameterized by x0. However, we can also think of this
family of curves in a much more powerful way: As a 1-parameter family of transformations
of the phase space! To see this, rewrite the general solution as φ(t, x0) ∶ R ×R → R instead
of the possibly confusing notation x(t, x0). Now instead of thinking of x0 as the parameter,
fixing the second argument and varying the first as the independent variable, do it the other
way: Fix a value of t, and allow the variable x0 = x (the starting point) to vary. Then we
get for t = t0:

φ(t0, x) ∶ R ×R→ R, φt0(x) ∶ R→ R, x(0)Ð→ x(t0).
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As t varies, every point x ∈ R (thought of as the initial point x(0), gets “mapped” to its
new position at x(t0). Since all solutions are uniquely defined, this is a function for each
value of t0, and will have some very nice properties. But this alternate way of looking at the
solutions of an ODE, as a family of transformations of its phase space, is the true dynamical
view, and one we will explore frequently.

Definition 3. For f ∶X →X a map, define the set

Ox = {y ∈X ∣ y = fn(x), n ∈ N}

as the (forward) orbit of x ∈X under f .

Some notes:

● If f is invertible, we can define the backward orbit for n ∈ −N, or the full orbit for
n ∈ Z.
● We can also write Ox = {x, f(x), f 2(x), . . .}, or for xn+1 = f(xn), Ox = {x0, x1, x2, . . .}.

Consider the discrete dynamical system f ∶ R → R, given by f(x) = rx, r > 0. What do
the orbits look like? Basically, for x ∈ R, we get

Ox = {x, rx, r2x, r3x, . . . , rnx, . . .} .

In fact, we can “solve” this dynamical system by constructing the evolution

Φ(x,n) = rnx.
Do the orbits change in nature as one varies the value of r? How about when r is allowed
to be negative? How does this relate to the ordinary differential equation ẋ = kx?

Definition 4. For t ≥ 0, the time-t map of a continuous dynamical system is the transfor-
mation of state space which takes x(0) to x(t).

Example 5. Let k < 0 in ẋ = kx, with x(0) = x0. Here, the state space is R (the phase
space, as opposed to the trajectory space R2), and the general solution is Φ(x0, t) = x0ekt

(the evolution of the dynamical system is Φ(x, t) = xekt. Notice that

Φ(x,0) = x, while Φ(x,1) = ekx.
Hence the time-1 map is simply multiplication by r = ek. The time-1 map is the discrete
dynamical system on R given by the function above f(x) = rx. In this case, r = ek, where
k < 0, so that

0 < r = ek < 1.
See Figure 1. Now how do the orbits behave?

Question 6. Given any dynamical system, describe the time-0 map.
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Definition 7. For a discrete dynamical system f ∶ X → X, a fixed point is a point x∗ ∈ X,
where f(x∗) = x∗, or where

Ox = {x∗, x∗, x∗, . . .} .

The orbit of a fixed point is also called a trivial orbit. All other orbits are called non-trivial.
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t
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0

Figure 2. The time-tmap for some
positive time of ẋ = kx, k < 0.

In our example above, f ∶ R → R,
f(x) = ekx, k < 0, we have x = 0 as
the ONLY fixed point. This corresponds
nicely with the unique particular solu-
tion to the ODE ẋ = kx corresponding
to the equilibrium x(t) ≡ 0.

So what else can we say about the
“structure” of the orbits? That is, what
else can we say about the “dynamics”
of this dynamical system? For starters,
the forward orbit of a given x0 will look
like the graph of the discrete function
fx0 ∶ N→ R2, fx0(n) = x0ekn. Notice how
this orbit follows the trajectory of x0 of
the continuous dynamical system ẋ = kx. Here, f is the time-1 map of the ODE. Notice also
that, as a transformation of phase space (the x-axis), f is not just a continuous function but
a differentiable one, with 0 < f ′(x) = ek < 1, ∀x ∈ R. The orbit of the fixed point at x = 0,
as a sequence, certainly converges to 0. But here ALL orbits have this property, and we can
say

∀x ∈ R, lim
n→∞
Ox = 0, or O Ð→ 0.
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Figure 3. The
forward orbit of
f(x) = xek lives
on a solution to
ẋ = kx, k < 0.

This gives a sense of what we will mean by a dynamical
system exhibiting simple dynamics: If with very little ef-
fort or additional structure, one can completely describe
the nature of all of the orbits of the system. Here, there
is one fixed point, and all orbits converge to this fixed
point.

Definition 8. For a discrete dynamical system, a smooth
curve (or set of curves) ℓ in state space is called an orbit
line if ∀x ∈ ℓ, Ox ⊂ ℓ.
Example 9. The orbit lines for time-t maps of ODEs
are the trajectories of the ODE.

Exercise 1. Go back to Figure 1. Describe completely
the orbit structure of the discrete dynamical system
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f(x) = rx for other two cases, when r = 1 and r > 1 (corresponding to r = ek, for k = 0
and k < 0, respectively). That is, classify all possible different types of orbits, in terms of
whether they are fixed or not, where they go as sequences, and such. You will find that even
here, the dynamics are simple, but at least for the k > 0 case, one has to be a little more
careful about where orbits go.

Exercise 2. As in the previous exercise, now describe the dynamics of the discrete dynamical
system f(x) = rx, when r < 0 (again, there are cases here). In particular, what are the orbit
lines here? You will find that this case does NOT correspond to a time-t map of the ODE
ẋ = kx for any value of k (why not?) Can you construct an ODE that DOES have f(x) = rx
as its time-1 map, for a given value of r < 0?

Exercise 3. For the discrete dynamical system f ∶ R→ R, f(x) = rx+b, completely describe
the orbit structure when b /= 0, and 0 < r < 1.

Exercise 4. Given ẋ = f(x), f ∈ C1(R), an equilibrium solution is defined as a constant
function x(t) ≡ c which solves the ODE, and they can be found by solving f(x) = 0 (remember
this?) Instead, define an equilibrium solution x(t) as follows: A solution x(t) to ẋ = f(x) is
called an equilibrium solution if there exists t1 /= t2 in the domain of x(t) where x(t1) = x(t2).
Show that this new definition is equivalent to the old one.

These are all good questions to explore. For now, the above example f(x) = ekx, where
k < 0 is an excellent example of a particular class of dynamical systems:

Definition 10. a metric on a subset of Euclidean space X ⊂ Rn is a function d ∶X ×X → R
where

(1) d(x, y) ≥ 0, ∀x, y ∈X and d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x), ∀x, y ∈X.
(3) d(x, y) + d(y, z) ≥ d(x, z), ∀x, y, z ∈X.

One such choice of metric is the “standard Euclidean distance” metric

d(x,y) =

¿
ÁÁÀ

n

∑
i=1
(xi − yi)2,

where x = (x1, x2, . . . , xn) ∈ Rn. Note that for n = 1, this metric reduces to d(x, y) =√
(x − y)2 = ∣x − y∣.

Remark 11. When discussing points in Euclidean space, it is conventional to denote scalars
(elements of R) with a variable in italics, and vectors (elements of Rn, n > 1) as a variable
in boldface. Thus x = (x1, x2, . . . , xn). In the above definition of a metric, we didn’t specify
whether X was a subset of R or something larger. In the absence of more information
regarding a space X, we will always use simple italics for its points, so that x ∈ X, even if
it is possible that X = R5, for example. We will only resort to the vector notation when it
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is assured that we are specifically talking about vectors of a certain size. This is common in
higher mathematics like topology.

Definition 12. A map f ∶ X → X, where X ⊂ Rn is called Lipschitz continuous (with
constant λ), or λ-Lipschitz, if

(1) d (f(x), f(y)) ≤ λd(x, y), ∀x, y ∈X.

Some notes:

● λ is a bound on the stretching ability (comparing the distances between the images
of points in relation to the distance between their original positions) of f on X. This
is actually a form of smoothness stronger than continuity.
● To get a sense for what Lipschitz continuity is saying, consider the following: On a
bounded interval in R, polynomials are always Lipschitz continuous. In fact, the total
finite length of the range in this case, is a Lipschitz constant. Rational functions, on
the other hand, even though they are continuous and differentiable on their domains,
are not Lipschitz continuous on any interval whose closure contains an asymptote.
● It should be obvious that λ > 0. Why?
● We can define

Lip(f) = sup
x/=y

d (f(x), f(y))
d(x, y)

,

which is the infimum of all λ’s that satisfy Equation 1. When we speak of specific
values of λ for a λ-Lipschitz function, we typically use λ = Lip(f), if known.

Definition 13. A λ-Lipschitz function f ∶X →X on a metric space X is called a contraction
if λ < 1.

Proposition 14. Let f ∶ I ⊂ R→ R be differentiable on the interval I, where ∀x ∈ I, we have
∣f ′(x)∣ ≤ λ. Then f is λ-Lipschitz.

Proof. Really, this is simply an application of the Mean Value Theorem: For a function f
differentiable on a bounded, open interval (a, b) and continuous on its closure, there is at

least one point c ∈ (a, b) where f ′(c) = f(b)−f(a)
b−a , the average total change of the function over

[a, b]. Here then, for any x, y ∈ I (thus ALL of [x, y] ∈ I even when I is neither closed nor
bounded), there will be at least one c ∈ I where

d (f(x), f(y)) = ∣f(x) − f(y)∣ = ∣f ′(c)∣∣x − y∣ < λ∣x − y∣ = λd(x, y).

�

Example 15. Back to the previous example f ∶ R → R, f(x) = ekx, the time-1 map of the
ODE ẋ = kx. Given that f ′(x) = ek everywhere, in the case that k < 0, the map f is a
contraction on ALL of R. Can you see this?
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Proposition 16. Let f ∶ I → I for I a closed, bounded interval, and f continuously differ-
entiable with ∣f ′(x)∣ < 1 ∀x ∈ I. Then f is a contraction.

Proof. f ′(x) is continuous on I so it will achieve its maximum there by the Extreme Value
Theorem, and

max
x∈I
∣f ′(x)∣ = λ < 1.

�
Note. If I is not closed, or is not bounded, this may NOT be true. Think about why not.

Exercise 5. Show f(x) = 2
√
x is NOT a contraction on (1,∞).

Definition 17. For f ∶ X → X a map, a point x ∈ X is called periodic (with period n) if
∃n ∈ N such that fn(x) = x. The smallest such natural number is called the prime period of
x.

Notes:

● If n = 1, then x is a fixed point.
● Define

Fix(f) = {x ∈X ∣ f(x) = x}

Pern(f) = {x ∈X ∣ fn(x) = x}

Per(f) = {x ∈X ∣ ∃n ∈ N such that fn(x) = x} .

Keep in mind that these sets are definitely not mutually exclusive.


