110.421 DYNAMICAL SYSTEMS

Week 1 Lecture 1 Notes

1. WHAT IS A DYNAMICAL SYSTEM?
Probably the best way to begin this discussion is with arguably a most general and yet
least helpful statement:

Definition 1. A dynamical system is a mathematical formalization for any fixed rule which
describes the dependence of a point’s position in some ambient space on a parameter.

e The parameter here is usually called “time”, and can be
(1) discrete (think the integers Z), or
(2) continuous (defined by some interval in R).
It can also be much more general, taking values as subsets of C, R", the quaternions,
or indeed any set with the structure of a group. However, classically speaking, a
dynamical system really involves a parameter that takes values only in a subset of
R. We will hold to this convention.

e The ambient space has a state to it which changes as one varies the parameter.
Roughly, every point has a position relative to the other points; coordinates often
provide this position idea, but in general this is a notion of a topology on a set: A
topology gives a set the mathematical property of a space.) We call this ambient
space the state space: it is the set of all possible states a dynamical system can be in
at any moment.

e The fixed rule is usually a way for going from one state to the next, given as a
recursively defined function. In contrast, an evolution is a way of going from any
particular state to any other state reachable from that initial state. AS we will see,
such a function will in general NOT be known a priori.

While this idea of a dynamical system is general enough to be useless, it will be instructive.
Before tightening it up, let’s look at some classical examples:

1.1. Ordinary Differential Equations. Given the vector-ODE in R",
x = f(x),

a solution, if it exists, is a vector of functions x(¢) = [21(t) @2(t) - z,(t)]" parameterized
by a real variable t € R where ¢ is valid on some interval. Here:

e The ODE itself is the fixed rule, describing the infinitesimal way to go from one state
to the next by a slight continuous variation in the value of the parameter ¢. Solving
the ODE means finding the unknown function x(¢). The initial data provide an initial
state of the variables of the system. Then x(t), for valid values of ¢, provides the
various “other” states of the system as compared to the initial state. Collecting up
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all the functions x(t) for all valid sets of initial data (basically, finding the expression
that writes the constants of integration of the general solution to the ODE in terms
of the initial data), into one big function IS the evolution.

e This type of a dynamical system is called continuous, since the parameter ¢ will take
values in some domain (an interval) in R. Dynamical systems like this arising from
ODEs are also called flows, since the various IVP solutions in phase space look like
the flow lines of a fluid in phase space flowing along the slope field (vector field defined
by the ODE).

e In this particular example, the state space is (a subset of) R”, where the solutions
live as parameterized curves, are called trajectories. We also call this space the phase
space.

So ODEs are examples of continuous dynamical systems (actually differentiable dynamical
systems). Solving the ODE (finding the vector of functions x(¢), means finding the rule
which stipulates any future state of a point given a starting state. But as we will see, when
thinking of ODEs as dynamical systems, we have a different perspective on what we are
looking for in solving the ODE.

1.2. Maps. Given any set X and a function f: X - X from X to itself, one can form a
dynamical system by simply applying the function over and over (iteratively) to X. When
the set has a topology on it (a mathematically precise notion of an “open subset”, which we
will get to), we can then discuss whether the function f is continuous or not. When X has
a topology, it is called a space, and a continuous function f: X — X is called a map.

o We will always talk of sets as spaces, detailing the topology only as needed. Here the
state space is X, with the positions of its points given by the topology (in almost all
situations, this will be obvious in context).

e the fixed rule is the map f, which is also sometimes also called a cascade.

e Here f defines the evolution (but only recursively) by composing f with itself: Given
x € X, define zg =z, and 1 = f(xg). Then

s = f(21) = f(f(20) = [*(20),
and for all n € N, (the natural numbers)

n times

Tn = f(2n1) = f(f(2n2)) = FOFCf(f(20)) ) = £ (20).

e Maps are examples of discrete dynamical systems. Some examples of discrete dynam-
ical systems you may have heard of include discretized ODEs, including difference
equations and time-t maps, and fractal constructions like Julia sets and the associ-
ated Mandelbrot arising from maps of the complex plane to itself. Some objects that
are not considered to be constructed by dynamical systems (at least not directly)
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include fractals like Sierpinski’s carpet, Cantor sets, and Fibonacci’s Rabbits (given
by a second order recursion). Again, we will get to these.

Besides these classic ideas of a dynamical system, there are much more abstract notions
of a dynamical system:

1.3. Symbolic Dynamics. Given a set of symbols M = {A, B,C, ...}, consider the “space”
of all bi-infinite sequences of these symbols (infinite on both sides)

Qu = {(...,:1:_2,3:_1,:50,3:1,3:2,...)‘ieZ,xieM}.

This is called the sequence space for M. Now let f : Q; — Qur be the shift map: on each
sequence, it simply takes 7 — i + 1; each sequence goes to another sequence which looks like
a shift of the original one.

Note. We can always consider this (very large) set of infinite sequences as a space once
we give it a topology like I mentioned. This would involve defining open subsets for this
set, and we can do this through e-balls be defining a notion of distance between sequences (a
metric). For those who know analysis, what would be a good metric for this set to make it
a space using the metric topology? For now, simply think of this example as something to
think about. Later and in context, we will focus on this type of dynamical system and it will
make more sense.

This discrete dynamical system is sometimes used as a new dynamical system to study the
properties of an old dynamical system whose properties were hard to study. We will revisit
this later.

Sometimes, in a time-dependent system, the actual dynamical system will need to be
constructed before it can be studied.

1.4. Billiards. Consider two point-beads moving at constant (possibly different) speeds
along a finite length wire, with perfectly elastic collisions both with each other and with the
walls. A state of this system will be the positions of each of the beads at a given moment of
time.

Exercise 1. One way to view the state space is as a triangle in the plane. Work this out.
What are the vertices of this triangle? Does it accurately describe ALL of the states of the
system? And once you correctly describe the state space, what will motion look like in it?
How does the dynamical system evolve?

Now consider a point-ball moving at a constant velocity inside a closed, bounded region
of R2, where the boundary is smooth and collisions with the boundary are perfectly elastic.
Questions:



(1) How does the shape of the region affect the types of paths the ball can traverse?

(2) Are there closed paths (periodic ones)?

(3) can there be a dense path (one that eventually gets arbitrarily close to any particular
point in the region?

There is a method to study this type of dynamical system by creating a discrete dynamical
system to record movement. In this discrete dynamical system, regardless of the shape of
the region, the state space is a cylinder. Can you see it? If so, what would be the evolution?

1.5. Other recursions. The Rabbits of Leonardo of 4 of rabbit pairs
Pisa: A beautiful example of a type of growth that is - 7
not exponential, but something called asymptotically ex-
ponential. We will explore this more later. For now,
place a newborn pair of breeding rabbits in a closed en-
vironment. Rabbits of this species produce another pair
of rabbits each month after they become fertile (and they
never die nor do they experience menopause). Each new pair of rabbits (again, neglect the
incest, gender and DNA issues) becomes fertile after a month and starts producing each
month starting in the second month. How many rabbits are there after 10 years?

S i W N~

Given the chart in months, we see a way to fash-

Month ] b total pairs . . . .
onth || an | jn | bn || total pairs ion an expression governing the number of pairs at

; (O) (1) (1) 1 the end of any given month: Start with r,, the
3 T o1 5 number of pairs of rabbits in the nth month. Rab-
4 117111 3 bits here will come in three types: Adults a,, juve-
5 2 1] 2 5 niles j,, and newborns b,,, so that r,, = a, + j, + b,.
6 31213 8 Looking at the chart, we can see that there are con-
7 5131]5 13 straints on these numbers:

(1) the number of newborns at the (n+1)st stage equals the number of adults at the nth
stage plus the number of juveniles at the nth stage, so that

bn+1 =ant ]n
(2) This is also precisely equal to the number of adults at the (n + 1)st stage, so that
Ap+1 = Ap + ]n

(3) and finally, the number of juveniles a the (n+1)st stage is just the number of newborns
at the nth stage, so that

jn+1 = bn-

Thus, we have

Tn =an +jn + bn = (an—l +jn—1) + bn—l + (an—l +jn—1)-
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And since in the last set of parentheses, we have a,_1 = a,_2 + jn_2 and j,_1 = b,_o, We can
substitute these in to get

T'n = ap +jn + bn = (an—l +jn—1) + bn—l + (an—l +jn—1)

=Qp-1+ jn—l + bn—l + Qp-2 + jn—2 + bn—? =Tp-1+TTh-2.

Hence the pattern is ruled by a second-order recursion r, = r,_1 + r,_o with initial data
ro =71 = 1. Being a second order recursion, we cannot go to the next state from a current
state without also knowing the previous state. This is an example of a model which is not
a dynamical system. We can make it one, but we will need a bit more structure, which we
will introduce later.

Here is a much better definition of a dynamical system:

Definition 2. A dynamical system is a triple (S, 7T, ®), where S is the state space (or phase
space), T is the parameter space, and

O:(SxT)—S

is the evolution.

Some notes:

e In the previous discussion, the fixed rule was a map or an ODE which would only
define recursively what the evolution would be. In this definition, ® defines the entire
system, mapping where each point s € § goes for each parameter value 7€ 7. It is
the functional form of the evolution, unraveling the recursion and allowing you to
go from a starting point to any point reachable by that point given a value of the
parameter.

e In ODEs, ® plays the role of “solving” for the general solution, as a 1-parameter
family of solutions (literally a 1-parameter family of transformations of phase space):
In this general solution, one knows for ANY specified starting value where it will be
for ANY valid parameter value, all in one function of two variables.

Example 3. In the Malthusian growth model, & = kz, with £ € R, and z(¢) > 0 a
population, the general solution is given by z(t) = xgef, for zo € R, (the nonnega-
tive real numbers: Really, the model works for xy € R, but if the model represents
population growth, then initial populations can ONLY be nonnegative, right?) the
unspecified initial value at t = 0. Here, S=R,, T =R and ®(s,t) = sek.

Example 4. Let & = —-22%t, (0) = zy > 0. Using the technique known as separation

of variables, we can integrate to find an expression for the general solution as z(t) =

t210' And since g = % (you should definitely DO these calculations explicitly!), we
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1 2.1]0

d t) = = )
(.1}'0, ) 2 +% l’ot2+2

2
Here again, we choose ¢S = R, and 7 = R. Question: Do you see any issues with
allowing z¢ < 07 Let xo = -2, and describe the particular solution on the interval
te(0,2).

e In discrete dynamics, for a map f : X - X, we would need a single expression to
write ®(x,n) = f*(z). This is not always easy or doable, as it would involve finding a
functional form for a recursive relation. Try doing this with f a a general polynomial
of degree more than 1.

Example 5. Let f:R — R be defined by f(x) =rz, for r e R,. Then ®(z,n) = r"x.

Example 6. For Leonardo of Pisa’s (also known as Fibonacci, by the way) rabbits,
we will have to use the recursion to calculate every month’s population to get to the
10-year mark. However, if we could find a functional form for the recursion, giving
population in terms of month, we could than simply plug in 12-10 = 120 months to
calculate the population after 10 years. The latter functional form is the evolution ®
in the definition of a dynamical system above. How does one find this? We will see.

Exercise 2. Find a closed form expression for the evolution of f(x) = rx + a, in the case
where —1 < r < 1 and a are constants. Also determine the unique point where f(z) = z in
this case.

In general, finding ® (in essence, solving the dynamical system) is very hard if not im-
possible, and certainly often impractical. Many times the purpose of studying a dynamical
system is not to actually solve it. Rather, it is to gain insight as to the structure of its
solutions. Really, we are trying to make qualitative statements about the system rather than
quantitative ones. Think about what you did when studying nonlinear systems of first order
ODEs in 110.302. Think about what you did when studying autonomous first order ODEs.

Here is another less rigorous definition of a dynamical system:
Definition 7. Dynamical Systems as a field of study attempts to understand the structure of

a changing mathematical system by identifying and analyzing the things that do not change.

Some ideas:

e Invariance: First integrals, and phase space area under a conservative vector field
and its flow.

e Symmetry: Periodicity and possible reduction of order techniques.

e Asymptotics: Long-term behavior of solutions, equilibria and limit cycle stability.



Example 8. In an exact differential equation
d
M(a.y) de+ N(a,y) dy = M(z,y) + N(z,y) 22 =0,
x

we have M, = 24
Y dy
)

a_i = M and g—i = N. Indeed, given a twice differentiable function ¢(z,y) defined on a domain
in the plane, it’s level sets are equations ¢(x,y) = C, for C' a real constant. Each level set
defines y implicitly as a function of x. Thinking of y as tied to x implicitly, differentiate
¢(x,y) = C with respect to z and get

do 06 06 dy _

dr  0r Oy dx
This last equation will match the original ODE precisely if the two above properties hold.
The interpretation then is: The solutions to the ODE correspond to the level sets of the
function ¢. We can say that that solutions to the ODE “are forced to live” on the level sets
of ¢. Thus, we can write the general solution set (at least implicitly) as ¢(z,y) = C, again
a l-parameter family of solutions. Here ¢ is a first integral of the flow given by the ODE.

= %—]X = N,. We know then that there exists a function ¢(z,y), where

0.

Exercise 3. Solve the differential equation 12 —3x2 + (4 - 2y)% =0 and express the general

solution in terms of the initial condition y(x¢) = yo. This is your function ®(z,y).

Example 9. Newton-Raphson: Finding a root of a (twice differentiable) function f: R - R
leads to a discrete dynamical system x,, = g(z,_1), where

f(x)
f'(x)
One here does not need to actually solve the dynamical system (find a form for the function

®). Instead, all that is needed are to satisfy some basic properties of f to know that if you
start sufficiently close to a root, the long-term behavior of any starting point IS a root.

g(x) =z~

Example 10. Autonomous ODEs: One can definitely integrate the autonomous first-order
ODE

v =f(y)=w-2)y+1), y(0)=y,

since it is separable, and the integration will involve a bit of partial fraction decomposing.
The solution is

Cedt+2
@) v =T gen

Exercise 4. Calculate Equation 1 for the ODE in Example 10.

Exercise 5. Now find the evolution for the ODE in Example 10 (this means write the
general solution in terms of yy instead of the constant of integration C'.)
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But really, is the explicit solution necessary? Once can simply draw the phase line, seeing
that the equilibrium solutions occur at y(t) = -1 and y(t) = 2, and that the equilibrium at
-1 is asymptotically stable (the one at 2 is unstable). Thus, if long-term behavior is all that
is necessary to know, we have:

1Ay <2
limy(t) =4 2 if yyp=2
e oo if yo > 2.

In both these last two examples, actually solving the dynamical system isn’t necessary to
gain important information about the system.



