MATH 421 DYNAMICS

Week 11 Lecture 2 Notes

1. TOPOLOGICAL ENTROPY

Recall our indicators of dynamical complexity from before: topological transitivity, mini-
mality, density of periodic orbits, chaos, growth rates of periodic orbits, etc. These properties
are called dynamical invariants under conjugacy:

e Allows you to study a new dynamical system by establishing a conjugacy with a
known one.

e Allows you to classify dynamical systems (everything conjugate to a known dynamical
system has the same dynamical invariants.

Theorem 1. Any two degree-2, expanding maps of S* are conjugate.

Thus, the only degree-2 expanding map to study is the map Fy : St - St Ey(z) = 2x
mod 1.

Example 2. Rotation number classifies circle homeomorphisms

Here is a new dynamical invariant:

Definition 3. The topological entropy of a map is the exponential growth rate of the number
of orbit segments distinguishable with arbitrary precision,

Note: This is the analytical version of what are called Lyapunov exponents.

Definition 4. Lyapunov Exponents are numbers which represent the exponential rate of
divergence of nearby trajectories.

The idea here is to take two trajectories of initial separation &g > 0. If after time-t, the
separation is d; = e*dy, then the Lyapunov exponent is A. Note that this depends largely
on the direction of the measurement. Different directions of travel will result in different
separation rates. Of interest typically is the largest:

e For C''-dynamical systems, the exponents are related directly to the eigenvalues of
the Jacobian matrix, a local linearization of the system.
e for (CY-systems, there is no Jacobian matrix to work with. However, one can still
calculate the maximum exponent via
1 0.
A =lim = lim log —.
t—~0 t 5—0  dp
e Calculations of Lyapunov exponents are usually done numerically and only locally.
Only rarely can they be calculated analytically or over the entire space.
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Now to actually define topological entropy, we will need some more machinery:

1.1. Capacity. Let X be a compact metric space (both closed and bounded). A set ' c X
is called r-dense if, using the metric,
X c | B.(2).
zeE

That is, if X can be covered by a set of r-balls all of whose centers lie in E. Then the
r-capacity of X, with metric d is the minimal cardinality of any r-dense set. Denote the
r-capacity of a set X by Sx 4(r) (or simply Sg(r) when the space X is either understood or
not necessary to be explicit about).

Some Notes:

e This is simply a way of denoting the “thickness” of sets which have no actual volume
by how they sit inside X (think cantor sets sitting inside an interval).

e [t does not really matter ultimately, but we will mostly consider closed balls in these
calculations.

e Some examples:

Example 5. Z is r-dense in R if r > % if the balls are open, and r > % is the balls are
closed.

Example 6. Z? is r-dense in R? if r > ¥2 if the balls are open, and 7 > V2 i5 the

2 2
balls are closed. Can you visualize this?

Example 7. Let I = [0, 1] be the unit interval. Using open balls here, the %—capacity
of I is 2. The }l—capacity is 3. The %—capacity is 5, and the %—capacity is 9. One can
show that Sy (2%) =2n141.

Exercise 1. Show this.
Exercise 2. Determine a bound on r for which Z3 is r-dense in R3.

e These calculations work well with Cantor Sets. Studying how Sy(r) changes as r
changes (really, it is the order of magnitude of S;(r)) leads to a generalized notion
of dimension.

2. Box DIMENSION

A rough notion of dimension for a topological space would be how many coordinates it
would take to completely determine a point in the space (in relation to the other points).
For example, the common description of the two-sphere S? is as the unit-sphere in R3; the
set of all unit-length vectors in R3. However, using spherical coordinates (p,d,¢) (see the
connection), all of these points have coordinate p = 1, and hence each point on the sphere
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only requires two coordinates to differentiate between them. Hence, in a way, S? is two-
dimensional as a space. This notion is not mathematically precise, however, as there do
exist curves (l-dimensional lines) that can “fill” a two-dimensional space (Peano curves,
some examples are called). Hence is this curve 1-dimensional, or 2 dimensional? Here, we
will explore one mathematically precise notion of dimension (there are many), which will be
useful in our definition of topological entropy.

Definition 8. A metric space X is called totally bounded if Vr >0, X can be covered by a
finite set of r-balls all of whose centers are in X.

Really, this definition is technical, and is meant to account for the general metric space
aspect of this discussion. That the centers need to be within X really only is a factor when
the metric space X is a subspace of another space Y (otherwise there is no “outside” of X.
And in Euclidean space, the notion of totally bounded is just the common notion of bounded
that you are used to.

Definition 9. For X totally bounded,

—-log S
beim (X) = lim 28200 (1)
=0 logr

is called the box dimension of X.
Notes:

e This concept is also called the Minkowski-Bouligard dimension, or the entropy di-
mension or the Kolmogorov dimension.

e This is an example of the idea of fractional dimension; some sets may look bigger
then 0-dimensional, yet smaller than 1-dimensional, for example.

e In the case where this limit may not exist (I cannot think of an example where it
wouldn’t for a totally bounded set), certainly one can use the limit superior or the
limit inferior to gain insight as to the “size” of a set.

e To calculate, really simply find a sequence of r-sizes going to 0, and calculate the
r-capacities for this sequence. If the limit exists, then ANY sequence of r’s going to
0, with their associated r-capacities will determine the same box dimension (Why?).

Example 10. Calculate bdim([7), for 1[0, 1] with the metric d that I inherits from R. Recall
that if we were to use closed balls, then the %—capacity for I'is S(x.q) (2%) = 2n-1. But for
open balls, we have S(x q) (2%) =27"1 + 1. The box dimension should be the same for both.
Indeed, it is: For the harder one,

“logSexap(r) _ Zlog( e 1) o log (20 1)

bdim () = li li
1m ( ) Tl_{% log r n—00 log (2%) n1—>r£10 1Og on
n—1 _
> lim log2 = lim n_l =1




and
-log S r —log (21 +1 log (271 +1
bdim(l—):limM: lim oz ( T +1) = lim M
=0 logr n>e log () n—>co  Jog2n
log2»t.-n . log2»! . logn
< lim ——— = lim + lim
n—oo  log 2" n—co log2n  n—ooJog2n
-1 1
= lim 2 4 lim 2 —140=1.

Hence bdim () = 1. Using the closed ball construction is even easier.

Example 11. Let C be the Ternary Cantor Set. Show bdim(C') = %ggg Here, assume that

C sits inside I from the previous example, and again inherits its metric d from /. And since
1

we can choose our sequence of r’s going to zero, we will choose r = 57, and consider only
closed balls. Then one can show that Scq) (3%) =27+ (Think about this: At each stage,
we remove the middle third of the remaining intervals. That means that at each stage we
can cover each interval by a closed ball of radius 3% But the mid-point is NOT in C', Hence
we have to shift over a bit to find a point in C'. Which means that we will need another ball
to cover the remainder on this side. This over covers the interval, but is not enough to cover
two adjacent intervals. And since at each stage there are 27! intervals, we are done. See
the figure.

The calculation is now easy:
—log S, -1 on+l 1 on+l
bdim (C) = i i8S (r) o —log(2mh) L log (2
r—0 log r n—>o0 IOg (L) n—>00 log 3n
n+1 log2 log2

noso o log3  log3’
Exercise 3. Let B={0,1,1,1 4, ..., 2 ...}, Calculate bdim (B).

) 92939 4
In fact, we have the following:

Theorem 12. Let C c I be the Cantor set formed by removing the middle interval of relative

length 1 —% at each stage. Then

log 2

biim(C) = (>

A special note: All Cantor sets are homeomorphic. Yet, if we change the size of a re-
moved interval at each stage, we effectively change the box dimension. This means that box
dimension is NOT a topological invariant (remains the same under topological equivalence).
Since a homeomorphism here would also act as a conjugacy between two dynamical systems
on Cantor Sets, this also means that box dimension is also NOT a dynamical invariant.
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For f: X — X, a continuous map on a metric space (X,d), consider a sequence of new
metrics on X indexed by n € N:

f — i i
d, (z,y) = max d(f'(z). f'(y)).
Here, the new metrics df actually measure a “distance” between orbit segments

Op = {x F(2),. .., f”‘l(x))
O = {0 £W)e . w)

as the farthest that these two sets diverge along the orbit segment, and assigns this distance
to the pair z and y.

Exercise 4. Show for a given n that dJ actually defines a metric on X.

Now, using the metric df, we can define an r-ball as the set of all neighbor points y whose
nth orbit-segment O, ,, stays within r distance of O, :

B.(z,n, f) = {y e X|d!(z,y) < 7“}.

Convince yourself that as we increase n, the orbit segment is getting longer, and more and
more neighbors y will have orbit segments that move away from O, ,. Thus the r-ball will
get smaller as n increases. But by continuity, the r-balls for any n will always be open sets
in X that have x as an interior point. Also, as r goes to 0, the r-balls will also get smaller,
right?

Now define the r-capacity of X, using the metric d! and the new r-balls B.(x,n, f),
denoted S(x 4)(r,n, f) (this is the SAME notion of r-capacity as the one we used for the box
dimension! We are only changing the metric on X to df. But the actual calculations of the
r-capacity depend on the choice of metric). As before, as r goes to 0, the r-balls shrink, and
hence the r-capacity grows. And also, as n goes to oo, we use the different df to measure
ultimately the distances between entire positive orbits. This also forces the r-balls to shrink,
and hence the r-capacity to grow. What is the exponential growth rate of the r-capacity as
r — 07 This is the notion of topological entropy:

lOg Sd(r7 n, f) Then
n

Definition 13. Let hy(f,r) := lim,
ha(f) = lim ha(f,r)

is called the topological entropy of the map f on X.

Next time, we will expound on this, and do a calculation to “see” the structure of this
construction.



