
MATH 421 DYNAMICS

Week 11 Lecture 1 Notes

Proposition 1. FL ∶ T2 → T2, the linear hyperbolic automorphism of the two torus given by
the hyperbolic matrix L is topologically mixing.

Corollary 2. FL is chaotic.

For a brief idea why the previous proposition is true, recall for FL given by the matrix L =

[ 2 1
1 1

], the eigenvalues were λ = 3±
√
5

2 , and the eigenvalue greater than 1 (the “expending”

eigenvalue) has eigendirection given by the vector [
1

−1+
√
5

2

]. Choose a small open line

segment T along the line y = (−1+
√
5

2 )x + c within the box representing the torus. As we

iterate the map, the orientation of the line stays the same, while the length of the line grows

by a factor of λ = 3+
√
5

2 at each iterate. For N >> 1, we would find that the length of FL(T )
will be huge, and wrap around the torus quite densely. In fact, we can choose this N so that
FN
L (T ) will intersect ANY ball of radius ϵ in T2. Hence choose any ϵ-ball V and any other

ϵ-ball U , and take as our T the diameter of U in the direction of the line y = (−1 +
√
52)x+c.

Then after the above chosen N , we would have F n
L(U) ∩ V /= ∅, for all n > N . Hence FL is

topologically mixing on T2.

And finally, we will not prove this explicitly, but we have the following:

Proposition 3. The logistic map fλ ∶ C → C, where λ > 2 +
√
5 > 4, and where C ∈ [0,1] is

the Canter set of points whose entire orbits stay within [0,1] is expanding.
Proposition 4. fλ as above, is topologically mixing.

Corollary 5. fλ as above, is chaotic on C.

1. Sensitive Dependence on Initial Conditions

So the next questions is: What information does chaos, as a property, convey about
the dynamical system? Flippantly speaking, it tells us that the orbit structure is quite
complicated. It tells us that arbitrarily close to a periodic point, are non-periodic points
whose orbits are dense in the space. On the other hand, it tells us that arbitrarily close to a
point whose orbit is dense in the space, are periodic points of arbitrarily high period. Hence
simply being very close to a point of a certain type does not mean that the orbits will be
similar. This means that one cannot rely on estimates or precision to help determine orbit
behavior. Mathematically, it means the following:

Definition 6. A map f ∶ X → X of a metric space is said to exhibit a sensitive dependence
on initial conditions if ∃∆ > 0 (called a sensitivity constant), where ∀x ∈ X and ∀ϵ > 0, ∃ a
point y ∈X where d(x, y) < ϵ and dA(fN(x), fN(y)) >∆ for some N ∈ N.
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There are lots of notes to say on this topic:

● The idea here is, for certain constants, no matter how small a neighborhood of a
chosen point x you start, there will always be a point y in this neighborhood that
after a time, its neighborhood will be far away from the orbit of x.
● The existence of at least one point in each neighborhood of an arbitrary point x
whose orbit veers away from the orbit of x is the notion that everywhere there is an
expanding direction (think of a differentiable map whose derivative everywhere, as
a matrix, has at least one eigenvalue of modulus greater than 1). This is like the
hyperbolic action on the torus.
● This idea was quite profound: Early developers of classical mechanics tended to
believe that eventually we would understand the universe completely. Given the
universes state in an instant, we should be able to predict its state at any future
moment. This was the thinking around the early 1800’s of people like Laplace.
● Poincare, in the late 1800’s, saw this phenomenon of a sensitive dependence on initial
conditions in the classical three-body problem. He understood immediately that the
earlier reasoning was flawed. Indeed, knowing the precise state of all things in the
universe was impossible. And with the presence of a sensitive dependence on initial
conditions (even in the simplistic three-body problem), a reasonable approximation
to the universe’s state in an instant would never be good enough to make good long
term predictions.
● Edward Lorentz, studying early climate models on a computeris like at MIT in the
1960’s, saw his deterministic (though nonlinear!) computer model make wildly diver-
gent predictions given the exact same input values in redundant runs of his program.
Puzzled as to why this was the case, it became clear that the model was fine. It
was the assumption that any number is known to infinite precision in a computer.
For example, zero is not zero on a computer. Setting a variable to 0 on a computer
makes the number 0 only to within a certain precision (it stores the number in a
certain number of bytes). For example, 0 in single precision, is only 0 down to 10−7.
If in the model this number is multiplied by a very large number, any variance from
true 0 would be multiplied into the realm where it will change the calculations. Do
this same run twice and you would get two different values for the result. This small
variance is like trying to grab a point like x above and instead getting a nearby
number like y instead. In the calculations, the resulting orbits would veer away from
each other, and the results would be different. Eventually, this was the discovery
that Lorentz had made. Incidentally, the Lorentz Butterfly is an example of what is
called a “strange attractor”, and came out of the puzzle Lorentz created.
● Isometries cannot exhibit a sensitive dependence on initial conditions. Why not?
● For f(x) = 2x mod 1, distance between nearby points grow exponentially by 2n. This
is a sensitive dependence on initial conditions. Eventually, this distance is larger than
1, and at this point, future iterates of each orbit tend to look unrelated to each other.
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● for a map exhibiting a sensitive dependence on initial conditions in a compact space
(closed and bounded), one can see how the orbit structure can be complicated. If all
orbits are moving away from each other, and yet cannot go beyond the boundaries of
the space, they just wind up mixing around each other. Think of smoke rising form
a hot cup of coffee, or rising from a cigarette, and you can see just how complicated
the orbits can be in this case.

Theorem 7. Chaotic maps exhibit a sensitive dependence on initial conditions, except when
the entire space consists of one periodic orbit.

Example 8. Let

X = { 0 , 1

5
,
2

5
,
3

5
,
4

5
} ,

and f ∶ X → X, f(x) = x + 1
5 mod 1. Here, f is continuous with respect to the topology

X inherits from R (this is called the subspace topology: Write X ⊂ R in the obvious way.
Then declare any subset of X to be open if it can be written as an intersection of X with
open set of R. This is really the trivial topology of X as it is a finite, discrete subset of R,
so each point of X is open). Here, X certainly has a dense orbit (every point of X live in
the orbit of 1

5). And the set of all periodic points of X are dense in X (ALL points of X
are periodic). Hence f is chaotic on X. But there certainly is not a sensitive dependence on
initial conditions here.

Example 9. The twist map on the cylinder does have a sensitive dependence on initial
conditions. To see this, recall that each horizontal circle is invariant, and has a different
rotation along it which is a linear function of height. Now take any point x, and any small
neighborhood of x. This small neighborhood will include points on horizontal circles different
from that of x. Choose any one of these points. Eventually, x and this other point will wind
up pretty much on opposite sides of the cylinder. So what is the sensitivity constant (the
largest such ∆)?

Exercise 1. For the twist map and the standard parameterization (and metric) of the circle
given by the exponential map f(x) = e2πix, show the sensitivity constant is 1

2 .

Proposition 10. A topological mixing map (on a non-trivial space) exhibits a sensitive
dependence on initial conditions.

Remark 11. Perhaps a better definition of chaos is one which requires a sensitive dependence
on initial conditions as a third condition along with the other two. This would discount the
“chaotic” map in the above example (which is hardly chaotic in a non-mathematical sense),
while not restricting in any detrimental way the intent of the property. In fact, this is a
fairly widely accepted set of conditions for a map to be chaotic. Note also that the condition
of sensitive dependence on initial conditions cannot by itself constitute a chaotic system.
The twist map is an example of a system hardly in a chaotic state. And even the star node,
the equilibrium at the origin of the map ẋ = I2x exhibits a sensitive dependence on initial
conditions. Again, hardly chaotic, with neither of the other two conditions satisfied.
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2. Topological Conjugacy

Definition 12. Suppose g ∶ X → X and f ∶ Y → Y are maps of metric spaces and there
exists a surjective map h ∶X → Y such that

h ○ g = f ○ h.
Then f is called a factor of g under h and f is said to be topologically semiconjugate to g
via the semiconjugacy h. Furthermore, if h is a homeomorphism, then h is a conjugacy and
f is topologically conjugate to g. We say in this case that f ∼h g.
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Note: In a (semi)conjugacy, orbits are taken to orbits via h.
Thus the orbit structure of g and that of f are the same. It
is for this that in dynamical systems, the notion of conjugacy
is the notion of equivalence, or isomorphism. As we will see,
the existence of a conjugacy allows us to study hard-to-study
dynamical systems by instead establishing a conjugacy between
them and easy to study ones.

The tent map Tr ∶ [0,1] → [0,1] (at right) is a continuous,
piece-wise linear, unimodular interval map given by

Tr(x) = {
rx if 0 ≤ x ≤ 1

2

r(1 − x) if 1
2 ≤ x ≤ 1.

This is also sometimes called the sawtooth function. Its height, at x = 1
2 , is obviously

r
2 .
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In contrast, the linear expanding map E2 on S1 has the graph
at left. As a map on S1, it is certainly continuous (here, the
point 0 is the same as 1 in both the domain and the range.
Hence the map can run off the top of the graph and reappear
at the bottom and still be continuous). As a graph in the unit
square displays much of the same information as the tent map
when the peak is precisely at 1. In fact, we can define E2 as
an interval map via

E2(x) = {
2x if 0 ≤ x ≤ 1

2

2x − 1 if 1
2 ≤ x ≤ 1.

Proposition 13. The logistic map f4(x) = 4x(1−x) on [0,1] is topologically semi-conjugate
to E2(x) = 2x mod 1 on S1 via h1(x) = sin2 πx, and topologically conjugate to the tent map
T2 ∶ [0,1]→ [0,1] via the conjugacy h2(x) = sin2 π

2x.
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First, we will state without much detail that h2(x) is a
homeomorphism. It is continuous, 1-1 and onto [0,1], and
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its inverse h−12 (x) = 2
π arcsin

√
x is also continuous on [0,1].

Instead, the map h1 ∶ S1 → I is a 2-1 map, and hence does
not have an inverse. Thus h1(x) is not a homeomorphism
(which makes sense, since S1 is not homeomorphic to I).
h1(x) is surjective, however, as one can see here.

Proof. Here, we will explicitly show the conjugacies. First,
we show h1 ○E2 = f4 ○ h1. This semi-conjugacy condition
needs to be parsed along the linear pieces of E2. Hence we
want

h1(2x) = f4 (sin2 πx) for 0 ≤ x ≤ 1

2
and(1)

h1(2x − 1) = f4 (sin2 πx) for
1

2
≤ x ≤ 1.(2)

As for the left hand sides of these two equations, in Equation ??, we get h1(2x) = sin2 π(2x) =
sin2 2πx.. And in Equation ??, on the left, we also have

h1(2x − 1) = sin2 π(2x − 1) = sin2(2πx − π) = sin2 2πx

since sin(x − π) = − sinx. On the right hand side of each, we see

f4 (sin2 πx) = 4 (sin2 πx) (1 − sin2 πx)
= 4 (sin2 πx) (cos2 πx)

= 4(1
2
− 1

2
cos 2πx)(1

2
+ 1

2
cos 2πx)

= 4(1
4
− 1

4
cos2 2πx)

= 4(1
4
sin2 2πx) = sin2 2πx.

As for the conjugacy h2(x), we need to show that h2 ○ T2 = f4 ○ h2. Again, we would need
to parse this condition along the two linear pieces of T2. The two resulting equations are
almost identical to the previous case. In fact, Equation ?? is precisely the same with all of
the factors π replaced by π

2 (thereby replacing h1 with h2). And for Equation ??, this time
we get

h2(2 − 2x) = sin2 π

2
(2 − 2x) = sin2 π(1 − x) = sin2 π − πx = sin2 2πx

since sin(π − x) = sinx. �

Notes:
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● The maps h1 and h2 are truly related, and come from the relationship between S1

and I. Conjugacies are really all about maps that take orbits to orbits, and any map
that satisfies this condition will transfer the dynamics of one system to the other. In
this case, both the tent map and the expanding circle map have a certain symmetry
about them; E2 (x + 1

2
) = E2(x) on I, while T2(x) = T2(1 − x). f4 shares the latter

property with T2, and T2(x) = 1 −E2(x) on the interval 1
2 ≤ x ≤ 1. The sine function

has the appropriate property that sinπx = sinπ(1 − x). The sine function is also a
beautiful way to map S1 down onto an interval. Indeed, view points of S1 as e2πix, for
x ∈ I, and the real part of z = e2πix ∈ S1 is cos 2πx. We can scale this as a “tent-like”
map on I as the function

x↦ 1 − cos 2πx
2

= 1

2
− 1

2
cos 2πx = sin2 πx.

This is precisely h1 above. For h2, halving the angle makes h2 1-1 on I.
● Once a (semi)-conjugacy is specified, ALL of the interesting dynamics of the logistic
map for λ = 4 are present in the tent map for r = 2, as well as the linear expanding
map E2 on S1.

Next class, we will explore the other two examples in our recent models.


