
MATH 421 DYNAMICS

Week 10 Lectures Notes

Question 1. How are any periodic points distributed?

we have the following proposition:

Proposition 2. The set of all periodic points of FL ∶ T2 → T2 is dense in T2 and Pn(FL) =
λn
1 + λ−n1 − 2.

Proof. The first claim we will make to prove this result is the following: Every rational point
in T2 is periodic. To see this, note that every rational point in T2 is a point in the unit
square with coordinates x = s

q , and y = t
q , for some q, s, t ∈ Z. For every point like this,

FL(x, y) is also rational with the same denominator (neglecting simplification, do you see
why?) But there are only q2 distinct points in T2 which are rational and which have q as the
common denominator. Hence, at some point, O(x,y) will start repeating itself. Hence this
claim is proved. Now notice that the set of all rational points in T2 is dense in T2, or

Q ∩ [0,1] ×Q ∩ [0,1] = [0,1]2.
Hence the periodic points are dense in T2.

The next claim is: Only rational point are periodic. To see this, assume FL ([
x
y
]) = [ x

y
].

Then

F n
L ([

x
y
]) = [ a b

c d
] [ x

y
] = [ x

y
] mod 1,

and this forces the system of equations

ax + by = x + k
cx + dy = y + ℓ , for k, l ∈ Z.

Simply solve this system for x and y and you get that x, y ∈ Q.

Exercise 1. Solve this system for x and y.

The number of periodic points can be found by creating a new linear map. Define

Gn ([
x
y
]) = F n

L ([
x
y
]) − [ x

y
] = (F n

L − I2) [
x
y
] .

The n-periodic points are precisely the kernel of this linear map:

Pn(FL) = ker(Gn) =
⎧⎪⎪⎨⎪⎪⎩
[ x
y
] ∈ R2

RRRRRRRRRRR
Gn ([

x
y
]) = [ 0

0
]
⎫⎪⎪⎬⎪⎪⎭
.

We can easily count these now. They are precisely the pre-images of integer vectors!
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Claim. All pre-images of [ 0
0
] under the mapGn = F n

L−I2 are given by Z2∩(Ln − I2) ([0,1) × [0,1)).

● Since FL is to be understood as simply the matrix L where images are taken modulo
1, the map Gn is simply the map Ln − I2 where images are taken modulo 1. Hence
we can study the effect of Gn by looking at the image of Ln − I2.
● To avoid over-counting points, we modify our unit square, eliminating twice-counted
points (on the edges) and quadruply-counted points (the corners). Consider the
“half-open box” [0,1)2 as our model of T2. In this model, every point lives in its own
equivalence class.

We try a few early iterates:

Example 3. G1 = L − I2. Here

G1 = L − I2 = [
2 1
1 1

] − [ 1 0
0 1

] = [ 1 1
1 0

] .

This map is a shear on [0,1)2 and we see that the only integer vector in the image is the
origin. Thus

P1(FL) = λ1 + λ−1 − 2 = 3 +
√
5

2
+ 3 −

√
5

2
− 2 = 3 − 2 = 1.

G  = L  - I
1 2

Example 4. G2 = L2 − I2. Here

G2 = L2 − I2 = [
2 1
1 1

] [ 2 1
1 1

] − [ 1 0
0 1

] = [ 5 3
3 2

] − [ 1 0
0 1

] = [ 4 3
3 1

] .

This map is a little more complicated, and we see that there are a few more integer vectors
in the image, namely the points (2,1), (3,2), (4,2), and (5,3). And since

P2(FL) = λ2 + λ−2 − 2 = 7 − 2 = 5,
we see that the formula continues to hold (where is the fifth point?)

Exercise 2. What were the original points in [0,1)2 that correspond to these 5 integer
vectors under G2?
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G  = L  - I
2 2

2

This proof ends by establishing an interesting geometric link: The area of Gn ([0,1)2) is
precisely equal the number of integer-vectors in the image. And the latter is given by

det (Gn) = λn + λ−n − 2,
where λ is the largest eigenvalue (in magnitude) of L. �

Note: G2 on R2 is NOT area preserving! In fact,

det(G2) = ∣
4 3
3 1

∣ = 5.

Note that the map FL above was area-preserving on the torus. It is also invertible (any
determinant one matrix with integer coefficients is invertible, and the inverse is also of de-
terminant one with integer entries!) However, area-preserving does NOT ensure invertibility
of the map. The prime example is the circle map Em ∶ S1 → S1, where Em(z) = zn. The
map is area-preserving, if we sum all of the lengths of the disjoint pre-images of small sets.
But it is also of degree m. And if ∣m∣ > 1, the map is m to 1. Invertibility is a very desirable
quality for a map, as it allows us to work both forwards and backwards in constructing orbits.
Fortunately, there are ways to study non-invertible maps by encoding their information in a
(different) invertible dynamical system. We will introduce this concept here, but not spend
a lot of time on it for now:

0.1. Inverse Limits. Let f ∶X →X be continuous on a metric space X, and x ∈X. When
f is invertible, constructing the backwards orbit amounts to constructing the inverse of the
map, and

Ox =
⎧⎪⎪⎨⎪⎪⎩
x ∈X

RRRRRRRRRRR
fn(x) = y, n ∈ Z

⎫⎪⎪⎬⎪⎪⎭
.

When f is not invertible, one would usually have to make a choice to go backwards, making
the inverse map not well-defined. There is a fix to this: Encode all possible orbits of points
in X as a set of integer-indexed sequences, where to each point x ∈ X, one associates its
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forward orbit starting at x at the 0th place, {xn}n∈N and for each choice of preimage of x, one
constructs a separate sequence by pre-adjoining each preimage of x. These new sequences
now start at the −1st place, and look like {xn}∞n=−1. Continue adjoining preimages to each
of the new sequences until you have a large set of sequences, all indexed by Z, or {xn}n∈Z.
This large set of sequences can be made into a topological space (actually a metric space)
with a bit of cleverness, so that sequences which are almost the same are considered “close”.

Example 5. For E2(x) = 2x mod 1 on S1, some of these sequences which correspond to
x0 = 1 look like

0th place

↓

{. . . , 1
8
,
1

4
,
1

2
, 1 ,1,1, . . .}

{. . . , 1
4
,
1

2
,1, 1 ,1,1, . . .}

{. . . , 3
8
,
3

4
,
1

2
, 1 ,1,1, . . .}

{. . . , 7
8
,
3

4
,
1

2
, 1 ,1,1, . . .}

Definition 6. For X a metric space and f ∶X →X continuous, the inverse limit is defined
on the space of sequences

X ′ =
⎧⎪⎪⎨⎪⎪⎩
{xn}n∈Z

RRRRRRRRRRR
xn ∈X, f(xn) = xn+1, ∀n ∈ Z

⎫⎪⎪⎬⎪⎪⎭

by F ({xn}n∈Z) = {xn+1}n∈Z.

This is a new dynamical system defined by the map F on the inverse limit space X ′.
Note that since this map takes entire sequences to sequences, it is 1-1, and hence we can go
backwards. On sequences, this map is invertible, since the entire history of a point is already
in the “point” (read: sequence).

Example 7. Back to the map E2 on S1, the limit space is

S =
⎧⎪⎪⎨⎪⎪⎩
{xn}n∈Z

RRRRRRRRRRR
xn ∈ S1, E2(xn) = xn+1, ∀n ∈ Z

⎫⎪⎪⎬⎪⎪⎭

with the map F ({xn}n∈Z) = {2xn mod 1}n∈Z. The space S is called a solenoid, and a picture
of it site on the cover of the book.
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1. Chaos and Mixing

Recall a map f ∶ X → X on a metric space is topologically transitive if there exists a
dense orbit. Some examples that we looked at included the irrational rotations of S1 and
the irrational linear flows on the two torus T2. Note that these examples had no periodic
points at all, and all orbits were dense. Contrast that with the idea some dynamical systems
seemed to be full of periodic points. Think of rational rotations of S1 and rational linear
flows on T2. Again, on these examples, all points were periodic, and none of these maps are
topologically transitive.

These properties seem to be mutually exclusive, and are when the dynamics are relatively
simple to describe. However, for dynamical systems which possess both a dense supply of
periodic orbits as well as a dense orbit, the dynamics can be labeled quite complex. How
complex?

Definition 8. A continuous map f ∶X →X of a metric space is said to be chaotic if

● f is topologically transitive,

● Per(f) =X.

Notes:

● There are many definitions of chaos floating around in this area, as efforts to finally
pin down the concept continue. This definition really is one of the better universal
definitions we have for the concept. That said, there is still a slight problem even
with this definition. Check out the theorem and example on chaos in the next lecture.
● Either one of these properties without the other means that the dynamics are rela-
tively simple to describe.

Some examples that we were recently playing with:

(1) Let Em ∶ S1 → S1 be the linear expanding map of S1, for ∣m∣ > 1.
(2) Let fλ ∶ C → C be the logistic map for λ > 4, restricted to the Cantor set of point

whose orbit lies completely within the unit interval.
(3) Let FL ∶ T2 → T2 be the linear hyperbolic automorphism of the two-torus given by

the linear automorphism of the plane determined by the hyperbolic matrix L.

In the first and third cases, we showed that the periodic points are dense in the respective
spaces. Hence the dynamical systems are chaotic if we can show there actually exists a
dense orbit. The same holds for the Cantor map, although we did not actually show that
the periodic points are dense. However, showing directly that there exists a dense orbit is
not easy. We will instead construct a bit more machinery, and show that these maps possess
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some stronger properties that transitivity. In this way, we can study the maps in more detail,
and gain some additional insight into the structure of these dynamical systems. To start:

Proposition 9. Let X be a complete separable metric space with no isolated points. For
f ∶X →X continuous, the following are equivalent:

(1) f has a dense orbit and is topologically transitive,
(2) f has a dense positive semiorbit,
(3) if U,V ⊂X are open and nonempty, ∃N ∈ Z such that fN(U) ∩ V /= ∅,
(4) if U,V ⊂X are open and nonempty, ∃N ∈ N such that fN(U) ∩ V /= ∅.

Remark 10. Recall that a metric space is complete if all Cauchy sequences converge. And
X is separable if there exists a countable dense subset. These properties, along with the “no
isolated points” condition, are technical in nature and while necessary, should not keep you
from well understanding how this proposition works on the nice spaces we are used to. So
don’t worry too much at this point about these technicalities.

Proof. Obviously 4 ⇒ 3 and 2 ⇒ 1. If we can show that 3 ⇒ 2 and 1 ⇒ 4, we would be
done. We will not do this, however. The real point of this exposition is to understand the
relationship between 1 and 3. To this end, we will prove the statement 1⇒ 3.

Let f be topologically transitive, with a dense orbit given by Ox, x ∈ X. Then for any
choice of nonempty, open sets U,V ⊂ X, ∃n,m ∈ Z such that fn(x) ∈ U , and fm(x) ∈ V .
If we suppose for a minute that m > n, then we would get that fm−n(U) ∩ V /= ∅. In the
case that f is invertible, this makes sense, since f−n(U) would be a neighborhood of x, and
then fm(f−n(U))∩V would be a neighborhood of fm(x) by continuity. However, this works
even in the case where f is not invertible. Simply think of f−n(U) as being the inverse (set
theoretic) image of U (the set of all things that go to U under fn). See the picture. �

Corollary 11. A continuous, open map f of a complete metric space is topologically tran-
sitive iff there does not exist two disjoint, open f -invariant sets.

It will help in understanding this last statement to understand the notion of an open map.
we will get to that in a minute. However, the idea in the previous Proposition is that finding
a dense orbit is equivalent to the notion that the orbit of ANY open set in X must eventually
intersect any other open set in X actually provides a method of discovery for dense orbits.
A set V ⊂ X is f -invariant, if f(V ) ⊂ V . Now assume that you have such a set V which is
open. Now take any other open set U . Whether it is invariant or not, its entire orbit OU is
a union of all of its images and is hence open in X. The Corollary says that if the map is
topologically transitive, then OU must intersect V . Put this way, the two notions look very
much alike.

To better get some of these ideas, lets go over a bit of topologically:
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Definition 12. A topology on a set X is a well-defined notion what constitutes an open
subset of X.

What well-defined means is: A topology on X is a collection TX of subsets of X that
satisfy

● ∅ and X are in TX ,
● the union of the elements of any subcollection of TX is in TX , and
● the intersection of the elements in any finite subcollection of TX is in TX .

For a topology TX on X, the elements of TX are called open. Also, any set that is given a
topology, is called a topological space.

Example 13. The set of all open intervals (a, b) ⊂ R constitutes a topology on R, called
the standard topology TR, for −∞ ≤ a ≤ b ≤∞. It should be obvious that this allows all of R
to be in TR, and if we let a = b, then the element (b, b) = ∅ is also in TR. The union of any
collection of open intervals is certainly open also. Now, without the last condition, however,
we would have a problem: Suppose we allowed that the intersection of any subcollection of
TR to be in TR. Then the set

∞
⋂
n=1
(− 1

n
,
1

n
) = {0}

would have to be open. But then all individual points would also be open, and thus by the
middle constraint, any subset of X would be open! You can see why the third provision is
necessary. Incidentally, there is a topology on R (or any other set), where each of the points
is considered open. It is called the trivial topology on the set, and although it works via the
definitions, it does not describe well the actual set as a space.

Some facts:

Definition 14. For f ∶ X → Y a (not necessarily continuous) map between two topological
spaces, f is continuous if whenever V ⊂ Y is open (an element of its topology TY ), then
f−1(V ) ⊂X is open (an element of TX).

This allows us to talk about maps being continuous between arbitrary topological spaces,
in a way that is entirely compatible with what you already learned as the definition of
continuity between spaces like subsets of R in Calculus I, or subsets of Rn in Calculus III.
Then, we simply assumed the standard topologies on Euclidean space, and the notions of
“nearness” which is at the center of continuity comes out of the little ϵ-balls used to define
continuity.

Definition 15. f ∶ X → Y is called an open map, if it is continuous and if whenever U ⊂ X
is open, then f(U) ⊂ Y is open also.
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While continuity is common among maps, “openness” is not, and is kind of a special
property. When the map f has a continuous inverse, then f is open. But this is not that
common a property.

Now, we know expanding maps of S1 and hyperbolic automorphisms of T2 look messy
dynamically. The question is: How messy are they?

Definition 16. A continuous map f ∶ X → X is said to be topologically mixing if, for any
two nonempty, open set U,V ⊂X, ∃N ∈ N, such that fn(U) ∩ V /= ∅, ∀n > N .

Notes:

● Do you see how much stronger (more restricting) this is to topological transitivity?
For instance, (topologically mixing)⇒(topologically transitive), but not vice-versa.
To see why, think of the irrational rotations of the circle. The orbit of a small open
interval will eventually intersect any other small open interval. But, depending on
the rotation, will most likely leave again for a while before returning. This is not
mixing!
● Actually, the problem with irrational circle rotations is a bit deeper; they are isome-
tries:

Lemma 17. Isometries are not topologically mixing.

Proof. Under an isometry, the diameter of a set U ⊂ X, diam(U) is preserved. Let
U = Bδ(x) ⊂ X be a small δ-ball about a point x ∈ X. Here diam(U) = 2δ and
∀n ∈ N, diam(fn(U)) = 2δ. Now choose v1, v2 ⊂ X, such that the distance between
v1 and v2 is greater than 4δ. Let V1 = Bδ(v1) and V2 = Bδ(v2) (so that the minimal
distance between these two balls is greater than 2δ). If we assume that the isometry
f ∶X →X is top. mixing, then there will be a k ∈ N, such that both fn(U) ∩ V1 /= ∅,
and fn(U) ∩ V2 /= ∅. ∀n > k. But this is impossible since V1 and V2 are too far
apart to both have nonempty intersection with an iterate of U . Hence f cannot be
mixing. �

Proposition 18. Expanding maps on S1 are topologically mixing.

Proof. for now, suppose that the expanding map is C1. Differentiable expanding maps have
the property that for f ∶ S1 → S1, ∣f ′(x)∣ ≥ λ > 1, ∀x ∈ S1. Let F ∶ R → R be a lift. it is
an exercise to show that the lift also shares the derivative property, ∣F ′(x)∣ ≥ λ, ∀x ∈ R. So
choose a small closed interval [a, b] ⊂ R, where b > a. Then, by the Mean Value Theorem,
∃c ∈ (a, b), such that

∣F (b) − F (a)∣ = ∣F ′(c)∣∣b − a∣ ≥ λ(b − a).
Hence, the length of the iterate of the interval is greater by a factor of λ than the interval.
This continues at each iterate of F , so that ∃n ∈ N, such that ∣∣F n ([a, b])∣∣ > 1. But then
π (F n ([a, b])) = S1.
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Now simply grab the open interval (a, b), noting that π((a, b)) will also be open (on small
intervals, π is a homeomorphism), and let U = π ((a, b)). With V be any other open set in
S1, we are done. �
Corollary 19. Linear expanding maps of S1 are chaotic.


