110.421 DYNAMICAL SYSTEMS

Contraction Map Example: Existence and Uniqueness criteria for first-order ODEs

A good example of a contraction mapping and its utility is given by what are called Picard iterations. Consider the first order IVP

(1)
$$\dot{y}(t) = f(t, y), \quad y(t_0) = y_0.$$

The question of whether Equation 1 has a solution, and when it has a solution, if it is uniquely defined, is a difficult one in general. However, due to the following theorem, the properties of f(t, y) at and near the initial point (t_0, y_0) can ensure that unique solutions exist:

Theorem 1. Suppose f(t,y) and $\frac{\partial f}{\partial y}(t,y)$ are continuous in some rectangle

$$R = \left\{ (t, y) \in \mathbb{R}^2 \mid \alpha < t < \beta, \gamma < y < \delta \right\},\,$$

containing the initial point (t_0, y_0) . Then, in some interval $t_0 - h < t < t_0 + h$ contained in $\alpha < t < \beta$, there is a unique solution $y = \phi(t)$ of Equation 1.

To give a good sense of why this is true, let's start with a definition:

Definition 2. An operator is a function whose domain and range are functions.

A good example of this is the derivative operator $\frac{d}{dx}$ which acts on all differentiable functions of one independent variable, and takes them to other (in this case, at least) continuous functions. Think

$$\frac{d}{dx}(x^2 + \sin x) = 2x + \cos x.$$

There are numerous technical difficulties in defining operators correctly, but for now, simply accept this general description.

We claim that any possible solution $y = \phi(t)$ (if it exists) to Equation 1 must satisfy

(2)
$$\phi(t) = y_0 + \int_{t_0}^t f(s, \phi(s)) \, ds$$

for all t in some interval containing t_0 .

Exercise 1. Show that this is true (really, simply differentiate both sides to recover the ODE.)

At this point, existence of a solution to the ODE is assured in the case that f(t, y) is continuous on R, as the integral will then exist at least on some smaller interval $t_0 - h < t < t_0 + h$ contained inside $\alpha < t < \beta$. Note the following:

• One reason a solution may not exist all the way out to the edge of R? What if the edge of R is an asymptote in the t variable?

Date: February 8, 2013.

• A function does not have to be continuous to be integrable (step functions are one example of integrable functions that are not continuous. However, the integral of a step function IS continuous. And if we tried to place a step function into Equation 1, what comes out would not be a step function.

As for uniqueness, suppose f(t,y) is continuous as above, and consider the following operator T, which take a function ψ to its image $T\psi$ defined by

$$T\psi = y_0 + \int_{t_0}^t f(s, \psi(s)) ds.$$

We can stick in many functions for $\psi(t)$ and the image will be a different function $T\psi$ which is still a function of t (See the example at the end of this document). However, looking back at Equation 2, if we stick in the function $\phi(t)$ which solves our IVP, the image $T\phi$ should be the same as ϕ . In this case, we call such a function a fixed point of T, since $T\phi = \phi$.

Exercise 2. Find ALL fixed points for the derivative operator $\frac{d}{dx}$ on the domain \mathbb{R} .

Hence, instead of looking for solutions to the IVP, we can instead look for fixed points of the operator T, since any fixed point for T will also satisfy Equation 2 and hence solve the IVP. How do we do this? Fortunately, this operator has an interesting property. First, for T and operator and ϕ a function, define

$$T^n \phi = \overbrace{T(T(\cdots (T(\phi))\cdots))}^{n \text{ times}}.$$

Incidentally, this is called iterating the function T, and the above expression is called the nth iterate of ϕ under T.

Theorem 3. Suppose you have a way to measure the distance between two functions f(t) and g(t) and call this distance dist(f,g). If an operator T satisfies

$$dist(Tf, Tg) \leq C \cdot dist(f, g)$$
, for some $0 < C < 1$,

then there is a single function ϕ that satisfies $T\phi = \phi$. In addition, this unique fixed point satisfies

$$\phi = \lim_{n \to \infty} T^n(g)$$

for any starting function g(t).

Remark 4. Any operator that satisfies the distance criterion in this theorem is called a C-contraction, and in essence this theorem is the Contraction Principle, a common tool used in the study of ODEs and Dynamical Systems. We won't prove this theorem directly, but we will show by construction in the proof of Theorem 1 below that the operator T is a contraction.

Remark 5. Though not entirely necessary, it does make the proof easier to suppose that both f(t,y) and $\frac{\partial f}{\partial y}(t,y)$ are not only continuous on R, but bounded here also. This is because we can always slightly restrict R at an edge where one of the variables blows up. The proof is true even in this case. However, it is much easier to see with this restriction. As an example, let $f(t,y) = \log y$. Here, both f and $\frac{\partial f}{\partial y} = \frac{1}{y}$ are continuous on the rectangle -1 < t < 1, 0 < y < 1. However, neither are bounded here. Create a new rectangle \widetilde{R} by moving the left boundary of R slightly to the right; for a small $\epsilon > 0$, define \widetilde{R} to be -1 < t < 1, $\epsilon < y < 1$. Here then both f and $\frac{\partial f}{\partial y}$ are continuous and bounded on \widetilde{R} .

proof of Theorem 1. Under the supposition that f and $\frac{\partial f}{\partial y}$ are bounded on R, call

$$M = \max_{R} \left| \frac{\partial f}{\partial y}(t, y) \right|,$$

and choose a small number $h = \frac{C}{M}$, where C < 1. Then define a distance within the set of continuous functions on the closed interval $I = [t_0 - h, t_0 + h]$ by

$$dist(g,h) = \max_{t \in I} \left| g(t) - h(t) \right|.$$

Then we have

(3)
$$dist(Tg, Th) = \max_{t \in I} \left| Tg(t) - Th(t) \right|$$

(4)
$$= \max_{t \in I} \left| y_0 + \int_{t_0}^t f(s, g(s)) \, ds - y_0 - \int_{t_0}^t f(s, h(s)) \, ds \right|$$

(5)
$$= \max_{t \in I} \left| \int_{t_0}^t f(s, g(s)) - f(s, h(s)) \, ds \right|$$

(6)
$$= \max_{t \in I} \left| \int_{t_0}^t \left[\int_{h(s)}^{g(s)} \frac{\partial f}{\partial y}(s, r) dr \right] ds \right|$$

(7)
$$\leq \max_{t \in I} \left| \int_{t_0}^t M \left| g(s) - h(s) \right| \, ds \right|$$

(8)
$$\leq \max_{t \in I} \int_{t_0}^t M \cdot dist(g, h) \, ds$$

(9)
$$\leq \max_{t \in I} \left\{ M \cdot dist(g, h) \cdot |t - t_0| \right\}$$

Exercise 3. The justifications of going from Step 5 to Step 6 and from Step 6 to Step 7 are adaptations of major theorems from Calculus I-II to functions of more than one independent variable. Find what theorems these are and show that these are valid justifications. Can you see now why the continuity of $\frac{\partial f}{\partial y}(t,y)$ is a necessary hypothesis to the theorem?

Exercise 4. Justify why the remaining steps are true.

Now notice in the last inequality that since $I = [t_0 - h, t_0 + h]$, we have that

$$|t - t_0| \le h = \frac{C}{M}.$$

Hence

$$dist(Tg, Th) \leq \max_{t \in I} \left\{ M \cdot dist(g, h) \cdot |t - t_0| \right\}$$

$$\leq M \cdot dist(g, h) \cdot \frac{C}{M} = C \cdot dist(g, h).$$

Hence T is a C-contraction and there is a unique fixed point ϕ (which is a solution to the original IVP) on the interval I. Here

$$\phi(t) = T\phi(t) = y_0 + \int_{t_0}^t f(s, \phi(s)) ds.$$

As an application, we can actually use this construction to "solve" an ODE:

Example 6. Solve the IVP

$$y' = 2t(1+y), \quad y(0) = 0.$$

Here, f(t,y)=2t(1+y), as well as $\frac{\partial f}{\partial y}(t,y)=2t$ are both continuous on the whole plane \mathbb{R}^2 . Hence unique solutions exist everywhere.

To actually find a solution, start with an initial guess to be

$$\phi_0(t) = 0.$$

Notice that this choice of $\phi_0(t)$ does not solve the ODE. But since the operator T is a contraction, iterating will lead us to a solution: Define $T\phi_0(t) = \phi_1(t)$, and similarly, define

$$\phi_n(t) = T\phi_{n-1}(t) = T(T(\cdots(T(\phi_0(t)))\cdots))$$

Here

$$\phi_1(t) = T\phi_0(t) = y_0 + \int_0^t 2s(1+\phi_0(s)) ds = \int_0^t 2s(1+0) ds = t^2.$$

Continuing, we get

$$\phi_2(t) = T\phi_1(t) = y_0 + \int_0^t 2s(1+\phi_1(s)) \, ds = \int_0^t 2s(1+s^2) \, ds = t^2 + \frac{1}{2}t^4,$$

$$\phi_3(t) = T\phi_2(t) = y_0 + \int_0^t 2s(1+\phi_2(s)) \, ds = \int_0^t 2s\left(1+s^2+\frac{1}{2}s^4\right) \, ds = t^2 + \frac{1}{2}t^4 + \frac{1}{6}t^6,$$

$$\phi_4(t) = T\phi_3(t) = y_0 + \int_0^t 2s(1+\phi_3(s)) \, ds = \int_0^t 2s\left(1+s^2+\frac{1}{2}s^4+\frac{1}{6}t^6\right) \, ds = t^2 + \frac{1}{2}t^4 + \frac{1}{6}t^6 + \frac{1}{24}t^8.$$

Exercise 5. Find the pattern and write out a finite series expression for $\phi_n(t)$. Here one can prove by induction that the pattern you find is the *n*th iterate function. However, I am more interested in you "seeing" it right now.

Exercise 6. Find a closed form expression for $\lim_{n\to\infty}\phi_n(t)$ and show that it is a solution of the IVP.