
110.109 CALCULUS II

Week 8 Lecture Notes: March 26 - March 30

We begin this week by continuing where we left off before the break: Using the Squeezing
Theorem to determine the convergence of a sequence. Another example:

Example 1. Does {cn} =
{

lnn
(n+2)2

}
converge? This sequence is not as clear as the last

example, as both the numerator and the denominator get large as we progress along the
sequence. But we can still compare this sequence to others in a straightforward manner.

Notice that for n > 1, cn > 0. And notice that, again for n > 1, in general

1

(n+ 2)2
<

1

n2
.

Thus for n > 1,

0 < cn =
lnn

(n+ 2)2
<

lnn

n2
.

So let an = 0 and bn = lnn
n2 . It is obvious that {an} −→ 0. It is less obvious that {bn} −→ 0.

I leave this latter calculation to you, but note that the function f(x) = lnx
x2 should be very

helpful to you. Then by squeezing, we also know that {cn} −→ 0.

Stripping off alternating terms. While many of our examples so far centered on sequence
rules that allowed us to use a corresponding function to study their possible convergence,
many sequences are not easily converted into functions. For example, sequences with al-

ternating signs, like our original bn = (−1)n

2n
do not work so well as continuous functions by

replacing n with x. However, there is hope, and it involves stripping away the alternating
term.

Theorem 2. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

One must be careful here to apply this theorem correctly. It ONLY works when the limit
of the absolute values of the sequence is 0, and not another number. The quintessential
example of this is the sequence an = (−1)n. Here

lim
n→∞

|(−1)n| = lim
n→∞

1 = 1, but lim
n→∞

(−1)n does not exist!

Example 3. Show bn = (−1)n

2n
converges to 0. We use the theorem directly, since

lim
n→∞

|bn| = lim
n→∞

∣∣∣∣(−1)n

2n

∣∣∣∣ = lim
n→∞

1

2n
= 0 (Why?)

hence by the theorem, so does bn.
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Passing a limit though a continuous function. One of the endearing properties of limits
is that one can pass a limit through a continuous function. Essentially this is Theorem 8 in
Section 2.5 on continuity in the text (see page 125). For sequences, this remains true:

Theorem 4. If lim
n→∞

an = L and f is a function continuous at L, then

lim
n→∞

f(an) = f(L).

This is particularly useful when the sequence rule is quite complicated and consists of a
composition of functions.

Example 5. Show an = tan
(

πn2

9n+4n2−12

)
converges and find the limit. We will use this

theorem to solve this problem by first looking at the sequence bn = πn2

9n+4n2−12
. We find that

this sequence is convergent and

lim
n→∞

bn = lim
n→∞

πn2

4n2 + 9n− 12
=

π

4
(again, why?).

And since f(x) = tan x is continuous at x = π
4
, we have

lim
n→∞

an = lim
n→∞

tan (bn) = tan
(
lim
n→∞

bn

)
= tan

π

4
= 1.

To go farther, let’s look more closely at some of the properties of certain sequences.

Definition 6. A sequence {an} is called increasing if, for all n ≥ 1, we have an < an+1. {an}
is called decreasing if, for all n ≥ 1, we have an > an+1. If either is the case, the sequence is
called monotonic.

Definition 7. A sequence {an} is said to be bounded above if there is a constant M , where
an ≤ M for all n ≥ 1. {an} is said to be bounded below if there is a constant m, where
an ≥ m for all n ≥ 1. If both are true, the sequence is simply called bounded.

This immediately leads to yet another theorem on the convergence of sequences:

Theorem 8. Every bounded monotonic sequence converges.

Really, think of this as follows: If a sequence must always rise, and yet never cross a
particular value, then it must converge. Think of a helium balloon in a closed room. It
cannot go through the ceiling, and yet will constantly rise (at least until the helium leaks
out, that is). Hence at least in the limit, it will have to reach a steady height.

Sequences can also be defined recursively, as in the value of a particular term is a function,
not of the index, but of the value of the previous term or some combination of previous terms
of the sequence. For example, Example 13 in the section defines the sequence

an+1 =
1

2
(an + 6), a1 = 2.
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And Example 3 in the book defines the Fibonacci Sequence as

fn+2 = fn+1 + fn, f0 = 1, f1 = 1.

Notice that the rule in both of these cases specifies the value of a term as a function of the
previous terms. Notice also that for this to work, we would always need to “start” somewhere.
The obvious advantage to this is that for different starting values, we can get many different
sequences, whose properties like convergence may depend on where one starts. The obvious
disadvantage to this is that to know the value of a term whose index is large would require
knowing ALL of the previous terms’ values. That could be problematic. Compare that to
the functional form of most of our sequences that we have defined so far.

Pay attention to Example 13 in the text. There are great conceptual ideas in this dis-
cussion. One such idea involves the notion of mathematical induction: a form of rigorous
deductive reasoning that states that a statement is deemed true for all of the natural num-
bers if it is true for the smallest of them, and if it is also true at any stage, then it is true
also at the next stage. It is a great way to establish a general result with only a couple of
calculations, and forms one of the standard ways that mathematicians prove things.

In the case at hand, let’s study the sequence of Example 13. Notice first what the sequence
will be if we start with a1 = 6. We get

an+1 =
1

2
(an + 6), a1 = 6 =⇒ an = 6, for all n ∈ N.

Now suppose that we start with some positive starting value for the sequence 0 ≤ a1 < 6.
Then, it is the case that

0 ≤ a2 =
1

2
(a1 + 6) <

1

2
(6 + 6) = 6.

In fact, let’s suppose that somewhere along our sequence the nth term satisfies 0 ≤ an < 6.
Then 6 ≤ an +6 < 6+6 = 12. Then also 1

2
(6) = 3 ≤ 1

2
(an +6) < 1

2
(12) = 6. But the middle

part of the inequality IS an+1. Hence we have shown that whenever a term in the sequence
is between 0 and 6, then so is its successor. Hence if we start in the interval [0, 6], we never
leave it. By induction, the sequence {an} is bounded.

Let’s play this game again in a different way. Notice that for our original sequence starting
at a1 = 2, we get a2 = 1

2
(2 + 6) = 4, which is greater than 2. we can duplicate this again

through out the sequence to see how the sequence progresses.
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Suppose we knew that somewhere along the sequence we had an−1 < an. Then we can say

an−1 < an

an−1 + 6 < an + 6

1

2
(an−1 + 6) <

1

2
(an + 6)

an < an+1.

Thus if somewhere along the way we know the sequence rises, then at the next stage the
sequence continues to rise. Since it started by rising, it will be forced to rise forever (but never
get larger than 6, right?). Hence, by induction, the sequence is increasing, and monotonic.

Put these together and you get by the previous theorem that this sequence must converge.
It turns out that it converges to 6, actually.

Lecture 2: Section 10.2 Series

Today we start the discussion on a series, basically the sum of the terms of a sequence:

Definition 9. The sum of all of the terms in a sequence {an} is called an (infinite) series,
and denoted

∞∑
n=1

an = a1 + a2 + · · ·+ an + · · · or simply
∑

an.

Note that sometimes this sum doesn’t exist:

an = n, so that

∞∑
n=1

an =

∞∑
n=1

n = 1 + 2 + 3 + · · · = ∞,

and sometimes it does:

an =
1

2n
. Here

∞∑
n=1

an =

∞∑
n=1

1

2n
=

1

2
+

1

4
+

1

8
+

1

16
+ · · · = 1??

To see geometrically this “sum”, look on the number line. Adding 1
2
to 0 and then successively

adding half of the previous amount in turn, notice how you will never exceed 1. Yet if you
believe that you will finish somewhere before 1, convince yourself that you will eventually
pass that number. This looks like a limit-type process and you are correct. The sum is
indeed 1, but to see this will take a bit of work.
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First, denote by sn the nth partial sum of

the series

∞∑
n=1

an, so that

sn =
n∑

i=1

ai = a1 + a2 + · · ·+ an.

As we push n toward ∞, these partial sums will tend toward a total sum, at least when the
sum actually exists.

Example 10. For an = 1
2n
, we have

s1 =
1

2
, s2 =

1

2
+

1

4
=

3

4
, s3 =

1

2
+

1

4
+

1

8
=

7

8
, · · · .

Do you sense a pattern? We have

sn =
1

2
+

1

4
+ · · ·+ 1

2n
= 1− 1

2n
=

2n − 1

2n
.

For a given series, the set of all partial sums forms a new sequence {sn}∞n=1. We can say
that where this sequence goes, so will go the series.

Definition 11. Given a series
∑∞

n=1 an with its associated sequence of partial sums {sn}, if
lim
n→∞

sn = s exists (so that {sn} is convergent), then the series is convergent and

∞∑
n=1

an = lim
n→∞

sn = s.

We call s the sum of the series, if it exists. If the sum does not exist, we say that the series
is divergent.

Example 12. Again, back to an = 1
2n
. we have

∞∑
n=1

1

2n
= lim

n→∞
sn = lim

n→∞
1− 1

2n
= lim

n→∞
1− lim

n→∞
1

2n
,

as long as the two limits on the right hand side exist. They do, and
∞∑
n=1

1

2n
= lim

n→∞
1− lim

n→∞
1

2n
= 1− 0 = 1.

The series is convergent and its sum is 1.

Definition 13. A series of the form

a+ ar + ar2 + · · ·+ arn + · · · =
∞∑
n=1

arn−1, a �= 0,

is called a geometric series.
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In a geometric series, each term is the product of the previous term and the factor r, so
that the terms of the series look like an+1 = ran for all n ∈ N. As an example, the previous
series we have been discussing, namely

∞∑
n=1

1

2n
=

∞∑
n=1

(
1

2

)n

=

∞∑
n=1

1

2

(
1

2

)n−1

is geometric with a = 1
2
and r = 1

2
.

A huge question involving a series in general, and a geometric series in particular, is: Does
the series converge? To answer this, we need to appeal to the sequence of partial sums. Let’s
look specifically at how the value of r determines whether the geometric series converges or
not.

Case 1. Let r = 1. Then for a �= 0 (there is not much to discuss in the case that a = 0,

no?) the series

∞∑
n=1

arn−1 =

∞∑
n=1

a. The partial sum is then

sn = a+ a + · · ·+ a = na,

and

lim
n→∞

sn = lim
n→∞

na = a lim
n→∞

n = ∞.

Hence the series diverges.

Case 2. Let r �= 1. Here then the series has its partial sum

sn = a + ar + ar2 + · · ·+ arn−1.

This is not so easy to manage, but there are clever ways to play with this expression. Here
is one; note that

rsn = ar + ar2 + ar3 + · · ·+ arn.

Then

sn − rsn = a− arn,

since all of the other terms cancl out (this is why the difference here is clever!). Now, solve
for sn to get sn(1− r) = a(1− rn), or

sn =
a(1− rn)

1− r
.

So does the series with this partial sum sequence converge? we have

lim
n→∞

sn = lim
n→∞

a(1− rn)

1− r
=

a

1− r
lim
n→∞

1− rn,

which will converge precisely when |r| < 1, and diverge precisely when |r| ≥ 1.
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Note: As a special case, let r = −1. Then lim
n→∞

1− rn does not converge, but not because

the sequence of partial sums gets large. Instead, here,

sn =
a(1− rn)

1− r
=

{
a if n is odd
0 if n is even

.

The sequence of partial sums does not exist here, even though the sequence is bounded.
Hence it is still the case that the geometric series diverges for r = −1.

Here are some examples of geometric series that you have already played with.

Example 14. Exponential Functions. Let f(x) = bx, where b > 0. Then we can create a
sequence an = f(n) = bn. This sequence is geometric, with the initial constant a = b, and
the base r = b, and

∞∑
n=1

an =

∞∑
n=1

bn =

∞∑
n=1

b (b)n−1 .

Again, this series will converge iff b < 1. And it will converge precisely to a
1−r

= b
1−b

. Thus,
there is a close relationship between exponential functions and geometric series. we say that
exponential function are examples of geometric growth.

Exercise 1. Find a value for b so that the series
∞∑
n=1

bn = 5.

Solution. While this may seem straightforward, there is one thing to consider. To use the
sum formula for a geometric series, it is absolutely necessary to correctly identify the values
for a as well as r: Here again

∞∑
n=1

bn =

∞∑
n=1

b (b)n−1 ,

so that a = r = b. Now we can use the folmula
∞∑
n=1

b (b)n−1 =
b

1− b
= 5.

The last equation is easy to solve with a little algebra, and we find b = 5
6
(check this!).

Example 15. Decimal representations are geometric series. The rational number 5
9
has

the decimal representation .555555, where the bar over the last 5 indicates that the pattern
continues. But recall the definition of a decimal representation means that

.555555 =
5

10
+

5

100
+

5

1000
+ · · · .

This is simply a geometric sequence with a = 5
10

and r = 1
10
, and

.555555 =

∞∑
n=1

5

10

(
1

10

)n−1

.
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Notice again that this geometric sequence converges since |r| = ∣∣ 1
10

∣∣ < 1. And it converges
to the quantity a

1−r
, which in this case is

∞∑
n=1

5

10

(
1

10

)n−1

=
a

1− r
=

5
10

1− 1
10

=
5
10
9
10

=
5

9
,

as it should.

Exercise 2. Determine whether the series

∞∑
n=1

5(2n+2)(3−n+1) converges. If it does, then

find the sum.

Think about this. We will do it next time.

Lecture 3: Section 10.2 Series (cont’d.)

Example 16. Determine whether the series
∞∑
n=1

5(2n+2)(3−n+1) converges. If it does, then

find the sum. Due to the presence of the index variable n in the exponent, and not anywhere
else, this series has a good chance of being a geometric series, and if we can put it into
the form of a geometric series (by correctly identifying both a and r), then perhaps we can
answer the question. To this end, let’s try to manipulate the term an = 5(2n+2)(3−n+1).
Here we have

an = 5(2n+2)(3−n+1) = 5 · 23 · 2n−1 · 1

3n−1
= 40 ·

(
2

3

)n−1

.

Notice that we have stripped out a 23 from 2n+2, knowing that 232n−1 = 23+(n−1) = 2n+2,

and 3−n+1 = 3−(n−1) =
(
1
3

)n−1
. Putting these together, we wind up with a term that meets

the form of a geometric series, with a = 40 and r = 2
3
. This series converges since |r| < 1,

and the sum is ∞∑
n=1

5(2n+2)(3−n+1) =
∞∑
n=1

40

(
2

3

)n−1

=
40

1− 2
3

= 120.

Now if the series is NOT geometric, then we cannot use the convergence criterion used
above. We can still appeal to the original notion that if we can find a good expression for
the terms of the sequence of partial sums sn, we can try to determine if the sequence has
a limit. If it does, then the series also converges and to the limit of the sequence of partial
sums.

Outside of this, sometimes one needs to simply be clever and look for patterns and structure
to exploit to see if a given series may converge or not. Examples 6 and 7 in the text are two
good examples of this type of cleverness. Example 6 deals with a series called a telescoping
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series, where each succeeding pair of terms of the series almost cancel each other out, leaving
very little but a couple of terms in the partial sum. This gives a useful expression for the
partial sum and the convergence of the series is determined by analyzing the sequence of
partial sums.

In example 7, they study the Harmonic Series. Let’s do that one in detail:

Example 17. The Harmonic Series. We saw that the series

∞∑
n=1

1

2n
converged, even though

it was a sum of an infinite number of positive numbers. The point was that the positive
numbers were decreasing quickly and quickly enough that the ultimate sums didn’t exceed
(in this case) 1. Here, we introduce the harmonic series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · · .

Here, the terms of the sequence are all still positive numbers which form a decreasing se-
quence, but they decrease much more slowly. Also, there is no easy way to write out a
useable expression for the partial sum

sn = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
.

And the sequence is certainly not geometric.

It turns out that the series diverges, and in this case, that means that the sum is infinite.
How to show this involves showing that the sequence of partial sums eventually exceeds every
integer. Indeed, we will do this by limiting ourselves to only certain of the partial sums, and
noting a useful pattern.

To start, notice that the first two partial sums have a pattern to them, if seen in a certain
way:

s1 = 1 = 1 +
0

2
, and s2 = 1 +

1

2
.

I like the pattern, and notice that if we skip to s4, we get

s4 = 1 +
1

2
+

1

3
+

1

4
> 1 +

1

2
+

(
1

4
+

1

4

)
= 1 +

1

2
+

1

2
= 1 +

2

2
= 2

Really, this says nothing more than the fact that s4 > 2.

But there is a pattern here: If we pass to s8, we notice that

s8 = 1+
1

2
+
1

3
+
1

4
+
1

5
+
1

6
+
1

7
+
1

8
> 1+

1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
= 1+

1

2
+
1

2
+
1

2
= 1+

3

2

which means that s8 > 2.5. We can continue this pattern by next looking at s16 and noting
that it is strictly larger than 1 + 4

2
= 3, then to s32, noting that it is strictly larger than
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1 + 5
2
, and generalizing to the pattern that at the partial sum of the 2nth term, we have

s2n > 1 +
n

2
.

Do you see how this is helpful. Say I wanted to know when the partial sum of the harmonic
series passes the sum of 100. Then I simply solve 100 = 1 + n

2
, This give me n = 198. So

then I know that the partial sum

s2198 > 100.

Since I can do this for every number n, eventually, my partial sum of the harmonic series
will pass every integer. This means that lim

n→∞
sn = ∞, so that the harmonic series diverges.

By the way, do not worry about having to be so clever in finding ways to show that a
series converges or not. In time, you will develop such abilities. For now, know that there
are many useful tools to determine whether a series converges or not. The rest of this section
and the next few will develop some of those ways. Here is one:

Theorem 18. If the series
∞∑
n=1

an converges, then lim
n→∞

an = 0.

All this theorem really says is that the only way that a series can converge is if the
sequence of partial sums has a limit. That sequence of partial sums can only have a limit if
the sequence tends to a number . That means that the things we add to each partial sum to
get the next one need to decay away to 0 as the index n goes to infinity. Makes sense, but
be very careful here:

CAUTION. The converse of this statement is NOT true!

The statement: “If lim
n→∞

an = 0, then

∞∑
n=1

an converges” is false! The harmonic series is

one example where the terms go to 0, but the series diverges. Be very careful here.

Instead, the contrapositive of the theorem is true. The contrapositive of a conditional
statement is formed by negating both antecedent (the “if part) and the consequent (and
“and” part), and switching them. We get:

Theorem 19. If lim
n→∞

an �= 0 (or does not exist), then the series

∞∑
n=1

an diverges.

One can call this The Divergence Test for a series. It is very effective.
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Example 20. Show
∞∑
n=1

1 + n2

5n2 + 6n
diverges. Here, we see

lim
n→∞

an = lim
n→∞

n2 + 1

5n2 + 6n
=

1

5
�= 0.

At this point, we know by the Divergence Test that the series will diverge.

Other conclusions to mention? Well, much like limits, series behave well in sums, differ-
ences, and the like (after all, there ARE defined by limits of their partial sums).

Suppose
∑

an and
∑

bn are two convergent series (this only works when these sums are
convergent). Then

(1)
∑

can = c
∑

an converges, and

(2)
∑

an ± bn =
∑

an ±
∑

bn also converges.

Here, the symbol ± means that when there is a “plus” on the left-hand side, there is also
a plus on the right, and when there is a “minus” on the left, there is also one on the right.
This should all make sense, but again, only if the individual sums exist. There is no need to
prove this result. Just keep it in mind.

Next time, we will do another example.


