
110.109 CALCULUS II

Week 6 Lecture Notes: March 5 - March 9

Lecture 1

To study some of the properties of polar curves, we should understand how they work
in relation to the rectilinear coordinates. Then we can use the concepts and formulas we
learned there to re-engineer similar concepts that are uniquely polar. the best way to do
that is to “view” a polar curve as simply an interesting parameterized curve. To this end,
r = f(θ) be a polar curve and notice that the equations converting polar coordinates to
rectilinear coordinates x = r cos θ and y = r sin θ, are actually simply functions of θ when
restricted to the polar curve:

x(θ) = f(θ) cos θ and y(θ) = f(θ) sin θ.

Thus the polar curve is just a parameterized curve where θ is the parameter. So the calcu-
lation of the slope of the curve is basically the same as that of Section 10.2:

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ
sin θ + r cos θ

dr
dθ
cos θ − r sin θ

.

While this looks much harder to calculate in general due to the trigonometric functions, the
theory involves nothing more than this expression.

Example 1. Since it is always best to start with the obvious example, let r = 1 be our polar
curve. The graph is the unit circle in the plane, and with our parameter equations, we have
x(θ) = cos θ and y(θ) = sin θ. Thus the slope of the tangent line to the polar curve is given
by

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ
sin θ + r cos θ

dr
dθ
cos θ − r sin θ

=
cos θ

− sin θ
= − cot θ =

−x
r
y
r

=
−x

y
.

This is our original conclusion when we viewed the unit circle as x2 + y2 = 1.

Example 2. Find the values of θ where the slope of the line tangent to r = 4 cos θ is
horizontal and vertical. Here dr

dθ
= r sin θ, so the slope of the tangent line at a value of θ is

dy

dx
=

dy
dθ
dx
dθ

=
dr
dθ
sin θ + r cos θ

dr
dθ
cos θ − r sin θ

=
−4 sin θ sin θ + 4 cos θ cos θ

−4 sin θ cos θ − 4 cos θ sin θ
.

Finding the horizontal lines means setting this last expression to 0. Hence

−4 sin θ sin θ + 4 cos θ cos θ = 0

sin2 θ = cos2 θ,

which is solved precisely when either sin θ = cos θ, or sin θ = − cos θ. It turns out this
happens rather often, when θ = (2n + 1)π

4
, n ∈ Z. This is any ODD integer multiple of π

4
.

But given the graph above, ANY odd multiple of π
4
lands on one of the two points at the top
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and bottom of the circle given by θ1 and θ2. See the graph. The two red lines correspond
to θ = ±π

4
. How would one go about finding the vertical tangents? Really, just set the

denominator to 0 and solve. You should get θ = nπ
2
, n ∈ Z: The boiled-down equation is

sin θ cos θ = 0.

Example 3. Do the same for the Cartioid r = 1 + sin θ. Here, the equations become more
involved.

Example 4. What is the equation of the line tangent to the polar curve given by θ = c, a
constant?

We also spent some time talking about the exam on Wednesday.

Lecture 2: Midterm 1 day, no lecture

Lecture 3

Today, we discussed the last topic concerning curves in the plane using the system of polar
coordinates; that of calculating the length of a curve directly within this coordinate system.
Often, we can first switch back to rectilinear coordinates, and use a formula we already
developed. But this may be difficult, or even impossible if the curve is not the graph of a
function in either or both sets of coordinates. It turns out the best place to start is to think
of a parameterized curve. Here is where we begin:

Let r = f(θ) be a polar curve. We know, given a function y = F (x), that the length of a
curve, from x = a to x = b, is given by the formula

Length =

∫ b

a

√
1 + (F ′(x))2 dx.

To review this, go to Section 8.1. This is part of the syllabus for the course 110.108 Calculus
I. we also know that, given a parameterization of the same curve x(t) and y(t), that the
curve is y(t) = F (x(t)), that

Length =

∫ b

a

√
1 + (F ′(x))2 dx =

∫ β

α

√√√√1 +

(
dy
dt
dx
dt

)2
dx

dt
dt =

∫ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

dt,

where x(α) = a and x(β) = b. Note that this is really just a substitution type argument,
and is what I call the Anti-Chain Rule. See last week’s lectures for details, or Section 10.2.

We seek to play the same game for a polar curve. Indeed, for any polar curve r = f(θ),
we can re-write the equations that relate polar coordinates back to rectilinear coordinates

x = r cos θ = f(θ) cos θ) and y = r sin θ = f(θ) sin θ).
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In this way, curve is written in the rectilinear coordinates and parameterized by θ. Then the
formula for arc length comes directly from Section 10.2:

Arc Length =

∫ β

α

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ.

This is workable, but having to go back to rectilinear coordinates to calculate the length of
a polar curve is not optimal. Better to be able to calculate directly, no? It turns out that
we can. First, write out the derivatives of the parameterization:

dx

dθ
=

d

dθ
(r cos θ) =

dr

dθ
cos θ − r sin θ

dy

dθ
=

d

dθ
(r sin θ) =

dr

dθ
sin θ + r cos θ.

Note that we need the product rule here because r is a function of θ. Back to the formula
for arc length, we place this in and look for simplifications. We get

Arc Length =

∫ β

α

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ

=

∫ β

α

√(
dr

dθ
cos θ − r sin θ

)2

+

(
dr

dθ
sin θ + r cos θ

)2

dθ

=

∫ β

α

√(
dr

dθ

)2

cos2 θ − 2r
dr

dθ
cos θ sin θ + r2 sin2 θ +

(
dr

dθ

)2

sin2 θ + 2r
dr

dθ
cos θ sin θ + r2 cos2 θ dθ

=

∫ β

α

√(
dr

dθ

)2 (
cos2 θ + sin2 θ

)
+ r2

(
sin2 θ + cos2 θ

)
dθ

=

∫ β

α

√(
dr

dθ

)2

+ r2 dθ

We now have a formula to calculate the length of a polar curve directly.
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Example 5. Set up the calculation to find the length of the
perimeter of of one leaf of a 4-leaf rose r = cos 2θ. Here, the
4-leaf rose has one of its petals lying symmetrically on the
polar axis (the positive x axis in rectilinear coordinates). The
integrand of the arc-length integral is√(
dr

dθ

)2

+ r2 =

√
(−2 sin 2θ)2 + (cos 2θ)2

=
√
4 sin2 2θ + cos2 2θ =

√
3 sin2 2θ + 1,
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since dr
dθ

= −2 sin 2θ, and we use the standard identity sin2 x + cos2 x = 1 to help simplify
what is under the radical.

We still need to know where to integrate, though (where the limits are). Essentially, we
need to find the interval of θ where the leaf is traced exactly once. In this case, it is fairly
easy: Look for two consecutive places where r = 0. We can solve:

r = 0 = cos 2θ ⇐⇒ 2θ =
π

2
⇐⇒ θ =

π

4
, and

⇐⇒ 2θ = −π

2
⇐⇒ θ = −π

4
.

These are the two red lines in the figure. Our calculation is then

Arc Length =

∫ π
4

−π
4

√
3 sin2 2θ + 1 dθ

and we are done.

Example 6. Find the length of the graph of the one-leaf rose r = 4 cos θ. Here, f(θ) = 4 cos θ,
and f ′(θ) = −4 sin θ. What are the limits of the arc-length integral? The interval of θ where
the leaf is traced out once. Recall that the off-leaf roses are traced twice over the full range
of θ. Here, any interval of length π will do. We choose θ = 0 and θ = π for now. Our length
then is

Arc Length =

∫ π

0

√
(4 cos θ)2 + (−4 sin θ)2 dθ =

∫ π

0

√
16 cos2 θ + 16 sin2 θ dθ =

∫ π

0

√
16 dθ = 4θ

∣∣∣π
0
= 4π.

So what is the perimeter of a circle of radius 2 (see figure below)?

1 2 3 4
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Today we started Section 7.8, on Improper Integrals. To start the
discussion, consider the integral∫ 2

1

1

x2
dx = −1

x

∣∣∣2
1
= −1

2
+ 1 =

1

2
.

This is simply a straightforward application of the Anti-Power Rule,
and since the function is positive for all x > 0, the definite integral
represents the area between the curve f(x) = 1

x2 and the x-axis.
if we changed the upper limit from 2 to a 5, or to a 10, or to a
1000, how would the calculation change? Indeed, for ANY b > 0
(including 0 < b < 1, we get∫ b

1

1

x2
dx = −1

x

∣∣∣b
1
= −1

b
+ 1 =

b− 1

b
.

Looking at this form, answer the following question:

Question. Is there a b > 1 where

∫ b

1

1

x2
dx > 1?



5

1 b
0

1The answer, by looking at the form b−1
b
, is most certainly

not. Then can we say something about whether the following
limit exists and what it is (if it exists):

lim
b→∞

∫ b

1

1

x2
dx.

Indeed, we can. Since for any b > 1, the integral is a definite
integral of a positive function, the value of the definite integral,
as the area of the region bounded by the function and the x-axis on the interval [1, b] is
positive. And since the integral can be expressed simply as a expression involving only b, we
can then evaluate the limit using techniques from back in Calculus I:

lim
b→∞

∫ b

1

1

x2
dx = lim

b→∞

(
−1

x

∣∣∣b
1

)
= lim

b→∞

(
−1

b
+ 1

)
= lim

b→∞
b− 1

b
= 1.

Note. This means the the area of the unbounded region represented between the function
and the x-axis on the infinite interval [1,∞), is bounded and equal to 1.

Really what we are asking for is the quantity∫ ∞

1

1

x2
dx,

but the limit does not make sense given our rules for integration. It is for this reason that
we call such an integral an improper integral, and define it as such:∫ ∞

1

1

x2
dx = lim

b→∞

∫ b

1

1

x2
dx.

Definition 7. For f(x) continuous for all x ≥ a, the improper integral∫ ∞

a

f(x) dx := lim
b→∞

∫ b

a

f(x) dx,

provided the limit exists. If the limit exists, we say the improper integral converges. Else,
we say it diverges.

The effect of this calculation is that one calculates the definite integral for some b as the
upper limit, giving an area (if the function is positive. Else the value of the integral loses
it’s interpretation as an area.) in terms of b. Then we push b to infinity and watch how the
value changes. If the value-changes settle down to a number (in the limit), then that number
IS the value of the improper integral. There are many examples, some of which I gave in
class, and many more in the book. Here is one.
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Example 8. Calculate

∫ ∞

1

1

x
dx, if it exists. Here

∫ ∞

1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx = lim

b→∞
(ln |x|)

∣∣∣b
1
= lim

b→∞
(ln |b| − ln |1|) = lim

b→∞
ln b = ∞,

hence does not exist (the improper integral diverges).

We will continue with more examples next time.


