
110.109 CALCULUS II

Week 3 Lecture Notes: February 13 - February 17

lecture 1

Today, I started with some basics about differential equations (called ordinary differential
equations, or ODEs). I began with the definition of the order of an ODE, defined as the
number corresponding to the highest derivative found in the equation. Some examples
were: P ′(t) = kP (t), a first order ODE and an example of the exponential growth found
in population dynamics, ẍ + kẋ + sinx = 0, a second order ODE and a model for the

pendulum,
[
y(5)(t)

]2 − exy(3)(t) + (sin t)y′(t) = et, a fifth-order nonsense ODE (Note the
notation when talking about higher order derivatives), and the famous equation of Newton
Mechanics, F = ma. I talked about the general components of a first order ODE; the
independent variable, usually called time, the dependent variable, the unknown function of
“time”, and the derivative(s) of the dependent variable with respect to time. And I talked
about a relatively general form for many first order ODEs. That is

(1) y′ = f(t, y).

The right hand side of this last expression is considered some expression involving both the
dependent cariable y and the independent variable t, and can be almost anything function-
like. Sometimes the expression on the right hand side does not include the y variable.
Then y′(t) = f(t). If this is the case, then the ODE is called a “pure-time” ODE, and
solving is simply integrating. The solution (solving for the unknown function) is simply the

antiderivative of f(t), and y(t) =

∫
f(t) dt = F (t) +C, where F ′(t) = f(t). As an example,

I did the ODE y′ = 2x+ xex. The solution is

y(x) =

∫
(2x+ xex) dx = x2 + (x− 1)ex + C.

Note when the right hand side of Equation 1 involves both y and t, solving the ODE is more
tricky, and we will study some of these ways in this chapter. As an example, I asked you
to show that y(t) = t4

t6+C
solves the ODE y′ = 4y

t
− 6ty2. Really, this is done simply by

taking the derivative of the solution, and the original solution and subbing appropriately
into the original ODE. I then talked about the initial value and gave three examples of such.
Like integrating in general, it turns out that there are tons of solutions to every ODE, but
they all differ by a constant (like antiderivatives). If you solved an ODE, and also knew
one bit of information about it, you can use that to find a value for the unknown constant
of integration you have in your general solution. For example, solve y′ = 4y

t
− 6ty2 with

the additional information (the initial value) that y(1) = 2. From above, we knew that the

solution functions to the ODE all look like y(t) = t4

t6+C
. The one we want needs to fit the
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bit of data we have. We solve for it:

y(1) =
t4

t6 + C

∣∣∣
t=1

=
1

1 + C
= 2.

We see that C = −1
2
, and the solution we want is y(t) = t4

t6− 1
2

.. I then launched into a

discussion of a visual analysis of a first order ODE called a slope field. I defined it as a grid
of small line segments of the xy-plane, each of which is tangent to a graph of a solution y(x)
of the ODE y′ = f(x, y). Finding these small line segments is easy. The slope of each of
the line segments is given by the function f(x, y). This is because for ANY solution y(x),
its derivative at any value x is precisely y′(x) = f(x, y). The ODE itself gives you all of
this information. The beauty of the slope field is that it acts like grasses at the bottom of a
swiftly moving stream; The current of the water is displayed by how each blade of grass is
bent over. Drop a leaf into the stream, and the path of the leaf will follow the ”flow” lines of
the grasses. It will follow the ”solution” given by the slope field. I then showed an example
of a slope field using the JODE software that we have here in the department. This software
is linked to the course website. WE will see more of this on Wednesday.


