
110.109 CALCULUS II

Week 12 Lecture Notes: April 23 - April 27

Lecture 2: Section 10.10 Taylor and Maclauren series

Let’s go back to our geometric series, g(x) =
1

1− x
, expanded at a = 2:

g(x) =
∞∑
n=0

(−1)n+1(x−2)n = −1+(x−2)−(x−2)2+(x−2)3−(x−2)4+· · · for −1 < x < 1.

This time, call Tn(x) the nth Taylor polynomial of g(x), at x = 2. Here

T0(x) = −1

T1(x) = −1 + (x− 2) = x− 3

T2(x) = −1 + (x− 2)− (x− 2)2 = −x2 + 5x− 7

T3(x) = −1 + (x− 2)− (x− 2)2 + (x− 2)3

...
...

Tn(x) =

n∑
i=0

(−1)i+1(x− 2)i.
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These polynomials are considered the “best”
degree-n polynomials to approximate g(x) at
and near the point x = 2. The main reason
is because they are the polynomials that have
the same derivatives (up to order-n for Tn(x)
as that of g(x). This is by design, and the
Taylor series is constructed using the deriva-
tives. As an example, it is a fact from Calcu-
lus I that the tangent line is the best linear
approximation to a function at a point (if it
exists, that is). Here, notice that g(2) = −1,

and g′(2) = d
dx

[
1

1−x

] ∣∣∣
x=2

=
[

1
(1−x)2

] ∣∣∣
x=2

= 1.

Thus

T1(x) = −1 + (x− 2) = g(2) + g′(2)(x− 2),

IS the equation of the tangent line and thus is the best linear function to approximate g(x)
at x− 2. The best quadratic will be T2(x) since it has the same 0th, 1st and 2nd derivatives
as that of g(x) at x− 2. Note the graph below.
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Given that each Tn(x) is just the partial sum of the series (and where the series converges,
we have the series equals g(x)), we get that lim

n→∞
Tn(x) = g(x) (on the interval of convergence).

Keep in mind here that the partial sums, as well as the series still include the unspecified
variable x. Hence each is really still a function of x.

How one shows that the limit of the Taylor polynomials (as n goes to∞) is the function also
gives a way of estimating just hoe good an approximation to g(x) the nth Taylor polynomial
is: Let

Rn(x) = Tn(x)− g(x)

be the remainder of the nth Taylor polynomial. It is again a function of x (since it is the
difference of two functions of x). Note that if lim

n→∞
Tn(x) = g(x), then

lim
n→∞

Tn(x)− g(x) = 0 = lim
n→∞

Rn(x).

Showing this may be difficult. However, we have a good way to estimate just hoe big the
remainder can be.

Theorem 1. If
∣∣f (n+1)(x)

∣∣ ≤ M for |x− a| < d, then the remainder Rn(x) of the nth Taylor
polynomial satisfies the inequality

|Rn(x)| ≤ M

(n + 1)!
|x− a|n+1, for |x− a| < d.

Some notes:

• In this theorem, they use d to denote the radius of convergence of the series. This is to
avoid the confusion of using R for both the radius of convergence and the remainder.

• Really, the right-hand-side of the inequality in the theorem is just a cap on the size on
the NEXT term in the series after the nth Taylor polynomial. To compare directly,
notice

f (n+1)(a)

(n+ 1)!
(x− a)n+1

︸ ︷︷ ︸
(n+1)st term in Taylor series

M

(n+ 1)!
|x− a|n+1

︸ ︷︷ ︸
bound for Rn(x)

.

You can see directly where the bound
∣∣f (n+1)(x)

∣∣ ≤ M comes in, as well as the switch

from the parentheses in (x− a)n+1 to the absolute values |x− a|n+1.

Notice that there are many good examples of Taylor series in this section. It will pay well
to spend some time with these, and not just skim over them. Here is one of them.

Example 2. Let k ∈ N be a natural number. Expand f(x) = (1+x)k as a Maclauren series.
As before, we start by finding either a pattern for the derivatives of f(x) at x = 0, or at
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least calculating them. Note first here, though, that for any k, f(x) IS a polynomial. So
f(x) has derivatives of all orders, even though after k, they will all be 0. Here

f(0) = (1 + x)k
∣∣∣
x=0

= 1

f ′(0) = k(1 + x)k−1
∣∣∣
x=0

= k

f ′′(0) = k(k − 1)(1 + x)k−2
∣∣∣
x=0

= k(k − 1)

f (3)(0) = k(k − 1)(k − 2)(1 + x)k−3
∣∣∣
x=0

= k(k − 1)(k − 2)

...
...

f (n)(0) = k(k − 1)(k − 2) · · · (k − n+ 1)(1 + x)k−n = k(k − 1)(k − 2) · · · (k − n+ 1) =
k!

(k − n)!
,

and thus all derivatives are 0 after the nth (can you see this?). Thus

f(x) =
∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

(
k!

(k − n)!

)
1

n!
xn =

k∑
n=0

(
k!

(k − n)!n!

)
xn =

k∑
n=0

(
k

n

)
xn,

where the notation
(
k
n

)
is the standard notation for the counting principle of how many ways

one can choose n objects out of a set of k objects where the order of the choosing does not
matter. Thus the coefficients of the polynomial f(x) = (1 + x)k are the entries in the kth
row of Pascal’s Triangle

k = 0: 1

k = 1: 1 1

k = 2: 1 2 1

k = 3: 1 3 3 1

k = 4: 1 4 6 4 1

k = 5: 1 5 10 10 5 1

and so
f(x) = (1 + x)5 = 1 + 5x+ 10x2 + 10x3 + 5x4 + x5.

Lecture 2: Section 10.10 Taylor and Maclauren series (cont’d.)

One thing about the binomial series mentioned above is that, for k ∈ R but k �∈ N, then
the function f(x) = (1 + x)k is not a polynomial. But it still has derivatives that behave
roughly the same as when k is a natural number. It is just that in general, the derivatives
will not wind up being 0 after a while. Thus the Maclauren series of this f(x) should still
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exist, but will not be a finite series. And the coefficients should wind up looking a lot like
those above for k a natural number. All of this is true, and can be written down explicitly
through the idea of generalized binomial coefficients: For k, n ∈ N, we know(

k

n

)
=

k!

(k − n)!n!
=

(
k!

(k − n)!

)
1

n!
=

(
k!

(k−n)!

)
n!

,

where the numerator is the thing to focus on here. Indeed,

k!

(k − n)!
=

k(k − 1)(k − 2) · · · (k − n + 1)(k − n)(k − n− 1) · · ·1
(k − n)(k − n− 1) · · · 1

=
k(k − 1)(k − 2) · · · (k − n + 1) · (k − n)!

(k − n)!

=

n terms︷ ︸︸ ︷
k(k − 1)(k − 2) · · · (k − n + 1) =

n−1∏
i=0

(k − i).

The n-terms on the right are simply the product of k and each of its n predecessors (a
predecessor here is defined as the number formed by decrementing k by 1). But this will
also work if k �∈ N is any real number, as in

(
π

2

)
=

(
2−1=1∏
i=0

(π − i)

)
2!

=
π(π − 1)

2
or

(
π

5

)
=

(
4∏

i=0

(π − i)

)
5!

=
π(π − 1)(π − 2)(π − 3)(π − 4)

5!
.

The only difference between this new case and the regular version of binomial coefficients
you are familiar with (as polynomial coefficients), is that now, the bottom number n may
be larger than the top number k. But this was true even in the regular case, as

(
5

2

)
=

5!

(5− 2)!2!
=

(
2−1=1∏
i=0

(5− i)

)
2!

=
5(5− 1)

2
= 10, while

(
5

7

)
=

(
7−1=6∏
i=0

(5− i)

)
7!

=
5(5− 1)(5− 2)(5− 3)(5− 4)(5− 5)(5− 6)

7!
= 0.

But when k is not a natural number, the generalized binomial coefficients do not become 0
after a while (in general).
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Some Notes:

• If k �∈ N, then (1 + x)k can still be written as a power series as

(1 + x)k =

∞∑
n=0

(
k

n

)
xn,

except that now the series is NOT finite (the resulting function is NOT a polynomial).
• It is a bit tricky to show (it is in the book, however), but the radius of convergence
for this power series in R = 1.

Example 3. Find the Maclauren series for i(x) =
1√
1 + x

. Here we could simply start

calculating the derivatives of i(x), setting them to 0, hopefully find a pattern and then write
the series using the pattern. However, we can also recognize that this function can be written
as an (infinite) binomial series,

i(x) = (1 + x)−
1
2 =

∞∑
n=0

(−1
2

n

)
xn,

where k = −1
2
. This series looks like

∞∑
n=0

(−1
2

n

)
xn =

(−1
2

0

)
x0 +

(−1
2

1

)
x1 +

(−1
2

2

)
x2 +

(−1
2

3

)
x3 +

(−1
2

4

)
x4 + . . .

= 1 +

(−1
2

)
1!

x1 +

(−1
2

) (−3
2

)
2!

x2 +

(−1
2

) (−3
2

) (−5
2

)
3!

x3 +

(−1
2

) (−3
2

) (−5
2

) (−7
2

)
4!

x4 + . . .

= 1− 1

2
x+

3

8
x2 − 15

48
x3 +

105

384
x4 + . . . .

Example 4. Use the fourth Taylor polynomial T4(x) of i(x) =
1√
1 + x

to estimate
√
2.

Here, we note two things: First, we have

i

(
−1

2

)
=

1√
1 +

(−1
2

) =
1√
1
2

=
1
1√
2

=
√
2,

and second, since the radius of convergence for the binomial series isR = 1, and−1
2
∈ (−1, 1),

the function equals the power series at this value, and we can use the series to estimate the
function value. From above,

i(x) ∼= T4(x) =

4∑
n=0

(−1
2

n

)
xn = 1− 1

2
x+

3

8
x2 − 15

48
x3 +

105

384
x4,
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and evaluated at x = −1
2
, we get

T4

(
−1

2

)
= 1− 1

2

(
−1

2

)
+

3

8

(
−1

2

)2

− 15

48

(
−1

2

)3

+
105

384

(
−1

2

)4

∼= 1.38.

Incidentally, a better approximation of the square root of 2 is
√
2 ∼= 1.4142136.

Taylor series can be quite useful for things like integration. Some functions are quite
difficult, or impossible to find antiderivatives for (at least in a nice form). One such function

is e−x2
, an expression intimately related to the standard normal curve in statistics. How so?

The Gaussian Distribution is a continuous probability distribution given by the function

f(x) =
1√
2πσ2

e−
(x−μ)2

2σ2 ,

where μ is the mean of the distribution, and σ is the standard deviation. Take a distribution
with μ = 0 and σ = 1√

2
, and you get

f(x) =
1√
π
e−x2

.

Finding the area under f(x) amounts to finding the probability that the value of a normal
random variable takes the value of x or less, or

P (X ≤ x) =

∫ x

−∞
f(x) dx.

Hence being able to anti-differentiate e−x2
would be very helpful. However, there is no nice

expression for a function whose derivative is f(x).

Example 5. Calculate

∫ 1

0

e−x2

dx via a power series approximation to within .001. First,

we seek to write the integrand as a power series. Here

e−x2

= e(−x2) =

∞∑
n=0

(−x2)n

n!
=

∞∑
n=0

(−1)n
x2n

n!
.

One can use the Ratio Test here to ensure that this power series equals the function for all
values of x (that is, the radius of convergence isR = ∞. You should do this on your own).

As a power series, e−x2
is easy to integrate, and the antiderivative of e−x2

is∫
e−x2

dx =

∫ ( ∞∑
n=0

(−1)n
x2n

n!

)
dx = C +

∞∑
n=0

(−1)n
x2n+1

n!(2n+ 1)
.
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This new series will again converge for any choice of x (why is this the case?). Hence, this

series equals the antiderivative of e−x2
on the interval [0, 1]. And so

∫ 1

0

e−x2

dx =

( ∞∑
n=0

(−1)n
x2n+1

n!(2n+ 1)

)∣∣∣1
0
=

∞∑
n=0

(−1)n
12n+1

n!(2n + 1)
−

∞∑
n=0

(−1)n
02n+1

n!(2n+ 1)

=

∞∑
n=0

(−1)n

n!(2n + 1)
= 1− 1

3
+

1

10
− 1

42
+

1

216
− 1

1320
+ . . . .

Now this last series is an alternating series. Recall that for an alternating series

∞∑
n=0

(−1)nbn

which converges, the nth partial sum sn, is within bn+1 of the true sum (whatever that is).
Hence we have |sn − s| < bn+1. In our case, notice that

b5 =
1

1320
<

1

1000
= .001,

and hence we know that the partial sum

s4 = 1− 1

3
+

1

10
− 1

42
+

1

216
∼= .74749

is within .001 of the true sum. Incidentally, a computer generated better approximation for
the true sum is something like .7468.

The Taylor series of a product of functions can be calculated in the normal direct way
(by taking derivatives, evaluating them at a point, and then looking for a pattern), or by
simply writing the power series for each of the product functions and then multiplying the
two power series (term by term, that is). Recall when multiplying two polynomials, each
term in one polynomial must be multiplied to each term in the other . While this may be
tedious and time consuming, remember that the early terms in a power series are the most
important, and there are very few calculations needed to determine these early terms. To
see this, note the following example:

Example 6. Determine the Maclauren series for ex sin x. Taking multiple derivatives of
this function may involve many terms to juggle. Instead, let’s simply multiply the power
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series of each factor function together: We get

ex sin x =

( ∞∑
n=0

xn

n!

)( ∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

)

=

(
1 + x+

x2

2!
+

x3

3!
+

x4

4!
+ . . .

)(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
. . .

)

= 1

(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
. . .

)
+ x

(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
. . .

)

+
x2

2!

(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
. . .

)
+

x3

3!

(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
. . .

)
+ . . .

= x+ x2 +

(
− 1

3!
+

1

2!

)
x3 +

(
− 1

3!
+

1

3!

)
x4 +

(
− 1

5!
+

1

2!3!
+

1

4!

)
x5 + . . .

= x+ x2 +
1

3
x3 − 1

30
x5 + . . . .

This also works for function that can be written as the quotient of two other functions.

Example 7. Find the Maclauren series of tanx. Again, the direct way would be to calculate
the derivatives of tanx and set them all to 0. But This starts to get complicated as one
winds up using the product rule a lot after the first couple of derivatives. Not that this is
any easier, but you can also do the following:

tanx =
sin x

cosx
=

( ∞∑
n=0

(−1)n
x2n+1

(2n + 1)!

)
( ∞∑

n=0

(−1)n
x2n

(2n)!

) .

To write out the series, one would have to use long division and calculate(
1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
. . .

)√(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
. . .

)
.

While this seems difficult, it is doable.

Next class, we will run through an example of calculating the power series of a product of
functions using the direct method as well as the product method.


