
110.109 CALCULUS II

Week 10 Lecture Notes: April 9 - April 13

Lecture 3: The Root Test

There is one more test which in certain cases establishes that a series is absolutely con-
vergent (and hence converges). This last test, like the Ratio Test previously, is one where
one watches how the sequence of terms an in the series

∑
an goes to 0 (as it must if the

series has any hope of converging!). Here, though, as n gets large and goes to ∞, we watch
how the nth root of the term an changes. We do this since as the terms are going to 0 in
magnitude, the nth root of a small number tends to grow back toward 1. Take a number less
that 1, and take larger and larger powers of it. The resulting numbers will get smaller and
smaller. Instead, if one takes smaller and smaller fractional powers of a number c between 0
and 1, that number will grow toward 1. Try this on the fraction 1
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= {.5, .707107, .793701, .840896, .870551, . . .} −→ 1.

We have the following:

Theorem 1 (The Root Test). Given a series
∑

an,

(1) If lim
n→∞

n
√

|an| = L < 1, then
∑

an converges absolutely, and hence converges.

(2) If lim
n→∞

n
√

|an| = L > 1, or the limit does not exist, then
∑

an diverges.

(3) If lim
n→∞

n
√

|an| = 1, then the test is inconclusive.

We won’t prove the Root Test here, but we can say a lot of things about it:

• The absolute signs are necessary here so that the nth root makes sense for even
integers n. Also, the number L, if it exists, must be non-negative, since each term in
this particular sequence of roots of an will be positive.

• If
∑

an has any hope of converging, then lim
n→∞

an = 0. But if the second par of the

Root Test is true, then lim
n→∞

n
√

|an| = L > 1, then after a while (for large values of

n), it must be the case that |an| > 1 (Why is this so?). Thus it will definitely happen
that lim

n→∞
an ̸= 0.
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• This test is great for series terms an involving powers of n. Then n
√

|an| will strip it
off. Indeed, if the inside of a term like an = (· · · )n has a limit which is less than 1,
then the series

∑
an will converge. As an example, show that the series

∞∑
n=1

(
2n+ 3

3n+ 2

)n

converges. By the Root Test, it will. (Now try to show convergence using the3 Ration
Test....)

• The Root Test is not so useful with terms involving factorials.

• As something to keep in mind, what is lim
n→∞

n
√
n = lim

n→∞
n

1
n ? Here

lim
n→∞

n
1
n = lim

n→∞
e
ln
(
n

1
n

)
= lim

n→∞
e

1
n
lnn = lim

n→∞
e

lnn
n = elimn→∞

lnn
n = e0 = 1.

This will be very useful to remember for the following type of problem:

Example 2. Test the following series for convergence:
∞∑
n=1

n

(lnn)n
.

Here, an = n
(lnn)n

, and by the Root Test, we have

lim
n→∞

n
√
|an| = lim

n→∞
n

√∣∣∣∣ n

(lnn)n

∣∣∣∣ = lim
n→∞

n
1
n

lnn
= lim

n→∞
n

1
n · lim

n→∞

1

lnn
,

where the last equal sign is only valid if the individual limits actually exist. They do since
the first is 1 (see above), and the second is 0. Hence the limit of a product IS the product
of the limits, and equals 0. Hence by the Root Test, the series converges.

Example 3. How does the Root Test do with geometric series?

Given
∑

an =
∞∑
n=1

arn−1, for some a, r ∈ R, we first note that it will be helpful to us to

change the subscript on the terms a bit. Notice that∑
an =

∞∑
n=1

arn−1 =
∞∑
n=0

arn.

This does not change the series, but it does make it a bit easier to manage. Then, by the
Root Test, we get

lim
n→∞

n
√
|an| = lim

n→∞
n
√

|arn| = lim
n→∞

n
√

|a| · |r| = |r| lim
n→∞

n
√

|a| = |r| · 1 = |r|.

(This last limit equals 1, as long as a ̸= 0. Why is this so?) And by the Root Test, as long
as this limit is less than 1, the series will converge. Hence we see that a geometric series will
converge as long as |r| < 1, just like before.
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We have a definition:

Definition 4. A series of the form
∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + · · · ,

where each ci, i ∈ N, is a constant, is called a power series. The ci’s are called coefficients.

Some notes:

• The constants are given in any specific series and often are functions of n.
• For any given value for x, we can ask whether the series converges or not.
• In fact, whenever the series converges, the series has a sum. For different values of x
where the series converges, this sum may be different. This assignment of a value of
x to the actual sum of the convergent series is a function, and

f(x) =
∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + · · ·

on the domain of values where the series converges. One can think of this series as
an infinite degree polynomial defined on the domain where it makes sense.

Example 5. Let ci = 1 for all i = 0, 1, 2, 3, . . .. Then

f(x) =
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · .

This is a geometric series with r = x and a = 1. Indeed, the standard geometric

series is
∞∑
n=1

arn−1. Rewrite it as

f(x) =
∞∑
n=1

arn−1 =
∞∑
n=0

xn.

We know precisely when the geometric series will converge. namely, when |r| < 1,
which in this case means |x| < 1. We also know, when the series converges, what its

sum is:
∞∑
n=1

arn−1 =
a

1− r
. In our case we get

f(x) =
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · = 1

1− x
, for all x ∈ (−1, 1).
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• A more general form for a power series is
∞∑
n=0

cn(x− a)n,

called a power series centered at a or a power series at a. Note that the original
definition of a power series is of one centered at x = 0. Also note that centering a
power series about a means that the term inside the parentheses is 0 precisely when
x = a.

• All tests are valid for determining when a power series converges. They are used to
find values for x where the series converges. This is important since we will use power
series as a substitute for functions when they converge.

Example 6. For what values of x does the following series converge:
∞∑
n=1

(x− 5)n

n
?

Let’s use the Ratio Test here, where an = (x−5)n

n
and an+1 =

(x−5)n+1

n+1
. Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(x−5)n+1

n+1

(x−5)n

n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣(x− 5)n+1

n+ 1
· n

(x− 5)n

∣∣∣∣
= lim

n→∞
|x− 5| n

n+ 1
= |x− 5| lim

n→∞

n

n+ 1
= |x− 5| · 1 = |x− 5|.

Since a series will converge if this limit using the Ratio Test is strictly less than 1, we will have
that as long as |x− 5| < 1, the series will converge. But that means that −1 < x − 5 < 1,
or 4 < x < 6. Note that by the Root Test, we will get the same result. Try this now.

Example 3 on page 742 of the text is a very nice example. Follow it closely. We will do
more next time.


