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Question 1. Calculate

∫ 3
2

0

1

(4x2 + 9)
3
2

dx.

Strategy. Here is an example of an integral whose integrand has the structure of one of the three
forms found in Section 7.3. In this case, one would naturally think that the substitution x = a tan θ
is a good one due to the sum of the terms under the radical. However, the choice of the constant
a needs to be studied. The whole point of the substitution, really, is to change the sum under the
radical (inside the parentheses) into a perfect square to kill off the fractional power. Finding a way
to do that is the reason I am offering this problem.

Solution. Rewrite the integrand

1

(4x2 + 9)
3
2

=
1(√

4x2 + 9
)3

as a way to “see” the form better. Since the expression under the radical is a sum, the form is
much like the one that benefits from the substitution x = a tan θ. But the point of the substitution
is to find a way to make what is under the radical

4x2 + 9 = 4a2 tan2 θ + 9 = 9 tan2 θ + 9 = 9(tan2 θ + 1) = 9 sec2 θ.

Hence you should choose your value for a so that 4a2 = 9. Thus, a = 3
2 is a good choice.

Let x = 3
2 tan θ. Then dx = 3

2 sec
2 θ dθ, and∫

1

(4x2 + 9)
3
2

dx =

∫
1(√

4x2 + 9
)3 dx =

∫
1(√

4
(
4
9 tan

2 θ
)
+ 9

)3

3

2
sec2 θ dθ

=

∫
1

(3|sec θ|)3
3

2
sec2 θ dθ

Now, since this is a definite integral, we can use the substitution to change the limits. Then we
will not have to “go back” to the variable x. When x = 0, this means that 3

2 tan θ = 0 which is

solved by θ = 0. When x = 3
2 , we get 3

2 = 3
2 tan θ, or tan θ = 1, which is solved by θ = π

4 . And on
this interval, sec θ > 0. Hence the absolute value signs are not needed, and∫ 3

2

0

1

(4x2 + 9)
3
2

dx =

∫ π
4

0

1

(3 sec θ)3
3

2
sec2 θ dθ

=
3

54

∫ π
4

0

1

sec θ
dθ =

1

18

∫ π
4

0
cos θ dθ =

1

18
sin θ

∣∣∣π4
0
=

1

18

√
2

2
=

√
2

36
.

1
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θ

2x

3

tan θ = x
3_
2

or tan θ = 
3
2x

4x  + 92

Now, we cannot really go backwards here directly to check
since we never actually found the antiderivative of the orig-
inal integrand as a function of x. We did get that the inte-
grand changed from 1

(4x2+9)
3
2
to 1

18 cos θ, whose antiderivative

is 1
18 sin θ. Switching this back to the x variable is effectively

the antiderivative of the original integrand. We use the tri-
angle below to find this. Given this triangle, it is easy to see
that sin θ = 2x√

4x2+9
, so that 1

18 sin θ = x
9
√
4x2+9

. Hence we

see that ∫
1

(4x2 + 9)
3
2

dx =
x

9
√
4x2 + 9

+ C.

So to check that our calculations were correct, we check that this last assertion is true.

Here

d

dx

[
x

9
√
4x2 + 9

+ C

]
=

1

9
· d

dx

[
x√

4x2 + 9
+ C

]

=
1

9
·

(√
4x2 + 9− x

(
1

2
√

4x2+9

)
8x

)
4x2 + 9

=
1

9
·

(
4x2+9√
4x2+9

− 4x2√
4x2+9

)
(√

4x2 + 9
)2

=
1

9
· 9

(4x2 + 9)
3
2

=
1

(4x2 + 9)
3
2

.

Question 2. Find an antiderivative of f(x) =
1√

x2 + 2x
.

Strategy. Here is an example of an integral whose integrand again kind of has the structure of one of the
three forms found in Section 7.3, but must be manipulated first. In this case, one can “complete the square”
to make what is under the radical better suited to the forms.

Solution. Any quadratic polynomial can be written as a sum or difference of squares through the process
of completing the square. Here

x2 + 2x = x2 + 2x+ 1− 1 = (x2 + 2x+ 1)− 1 = (x+ 1)
2 − 1.

Thus ∫
1√

x2 + 2x
dx =

∫
1√

(x+ 1)2 − 1
dx =

∫
1√

u2 − 1
du

after the substitution u = x1, du = dx. This form benefits from the trigonometric substitution u = sec θ,
where du = sec θ tan θ dθ, and∫

1√
u2 − 1

du =

∫
1√

sec2 θ − 1
sec θ tan θ dθ =

∫
1

|tan θ|
sec θ tan θ dθ.

Now here, we do not know before hand which interval we want to define our trig functions. The good part
about that is that we are only looking for ANY antiderivative of f(x). Hence we have the freedom to choose
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our interval and can can choose an interval where tan θ is positive. Specifically, we can choose the interval(
0, π

2

)
where both sec θ and tan θ are positive. But really, we do not have to specify at all. Simply make a

choice for tan θ. Then∫
1

|tan θ|
sec θ tan θ dθ =

∫
1

tan θ
sec θ tan θ dθ =

∫
sec θ dθ = ln |sec θ + tan θ|+ C.

Again, using the substitution to help make the triangle below, we get∫
1√

x2 + 2x
dx =

∫
1√

u2 − 1
du =

∫
sec θ dθ = ln |sec θ + tan θ|+ C

= ln
∣∣∣u+

√
u2 − 1

∣∣∣+ C

= ln
∣∣∣(x+ 1) +

√
x2 + 2x

∣∣∣+ C.

θ

1

x+1

sec θ = u = x+1 tan θ = x  + 2x2

x  + 2x2

Does this work? Well, here

d

dx

[
ln

∣∣∣(x+ 1) +
√

x2 + 2x
∣∣∣+ C

]
=

1 + 2x+2

2
√

x2+2x

(x+ 1) +
√
x2 + 2x

=

√
x2+2x+(x+1)√

x2+2x

(x+ 1) +
√
x2 + 2x

=
1√

x2 + 2x
.


