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Question 1. [15 points] Verify or disprove the following:
(a) There exists a C2 function f(x, y, z) whose gradient is the vector field

~F =
(
ex cos y + e−x sin z

)
~ı− ex sin y~− e−x cos z ~k.

(b) There exists a C2 vector field ~G(x, y, z) whose curl is the vector field
~F = x

(
y2 + 1

)
~ı + (yex − ez)~ + x2ez ~k.

Solutions:

(a) Let f(x, y, z) = ex cos y − e−x sin z. Then ~F = ∇f .

(b) If ~F = ∇× ~G for some C2 vector field ~G, it would have to be the case

that ∇ · ~F = 0, since the curl of a vector field is incompressible as a
vector field. But

∇ · ~F =
∂

∂x

(
x

(
y2 + 1

))
+

∂

∂y
(yex − ez) +

∂

∂z

(
x2ez

)

= y2 + 1 + ex + x2ez 6= 0.

Hence, it is NOT the case that ~F is the curl of some other vector field
~G.
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Question 2. [20 points] Use the method of Lagrange multipliers to find the minimum distance from the
origin to the surface x2 − (y − z)2 = 1.

Solution:

The method of Lagrange multipliers leads to the system given by the
vector equation ∇f(x, y, z) = λ∇g(x, y, z), and the scalar equation g(x, y, z) =

1, where f(x, y, z) =
√

x2 + y2 + z2 and g(x, y, z) = x2− (y− z)2. The system is:
x√

x2 + y2 + z2
= λ2x

y√
x2 + y2 + z2

= −λ2(y − z)

z√
x2 + y2 + z2

= λ2(y − z)

x2 − (y − z)2 = 1.

Notice that the first equation leads immediately to the multiplier: λ =
1

2
√

x2 + y2 + z2
. With this, the system boils down to

x = x

y = −(y − z)

z = y − z

x2 − (y − z)2 = 1.

(we could have immediately “chosen” our distance function without the
square root sign; This would have made λ “nicer” and the boiled down sys-
tem would have been the same. You should think about why this works?).
The middle two equations are satisfied only for y = z = 0 (their graphs are
two lines in the yz-plane that cross at the origin), and these values coupled
with the last equation and the first yield x = ±1.

To see that these critical points (−1, 0, 0) and (1, 0, 0) must be minima
(recall that for functions of more than one variable, one can have more
than one local minima without having a local maxima: See Problem 47, p.
259 in the text), look directly at the distance function. For a point along
the surface, the x-coordinate must satisfy x2 = 1 + (y − z)2. Hence

f(x, y, z)

∣∣∣∣g(x,y,z)=1 =
√

x2 + y2 + z2

∣∣∣∣x2=1+(y−z)2 =
√

1 + (y − z)2 + y2 + z2 ≥ 1

everywhere on the surface. Hence any point of distance 1 from the origin
is a minimum.
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Question 3. [25 points] Let R be the region in R2 bounded by the lines y = x and y = 4x, and the
hyperbolas xy = 1 and xy = 4. And let R be the image of a domain D under the transformation
T (u, v) = (u

v , v).
(a) Find and sketch D.

(b) Evaluate
∫∫

R

xy3 dA.

x

y

R

Solution:

(a) .

x

y

R

v

D

(.5,2) = b q = (1,2)

(2,2) = cr = (4,2)

(1,4) = ds = (4,4)

(1,1) = ap = (1,1)

p

q
r

s

a

d

cb
T(u,v)

1 2

3

4

1

34

2

u

v = y

u = xy

u = v

4u = v

2

2

2

4

(b) Here we use the Change of Variables Formula directly:∫∫

R

xy3 dx dy =

∫∫

D

x(u, v)y3(u, v)

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣ du dv

=

∫ 4

1

∫ 2
√

u

√
u

u

v
v3

∣∣∣∣
1

v

∣∣∣∣ dv du

=

∫ 4

1

∫ 2
√

u

√
u

uv dv du

=

∫ 4

1

(
u

v2

2

∣∣∣∣
2
√

u

√
u

)
du

=

∫ 4

1

3

2
u2 du =

u3

2

∣∣∣∣
4

1

= 32− 1

2
.



4 please show all work, explain your reasons, and state all theorems you appeal to

Question 4. [20 points] Do exactly ONE of the following:
(a) Let C be a simple closed curve in R2. Show that the area of the region enclosed

by C equals the circulation of the vector field ~F =
(
−y

2
,
x

2

)
along C.

(b) Use Green’s Theorem to prove the following special case of the Change of Vari-
ables Formula ∫∫

D

dx dy =

∫∫

D∗

∣∣∣∣
∂ (x, y)

∂ (u, v)

∣∣∣∣ du dv

for the transformation (u, v) 7→ (x(u, v), y(u, v)) (Hint: Expand the Jacobian.
You will use Green’s Theorem on each side).

Solutions:

(a) The circulation of ~F is the line integral∮

C

~F · d~s =

∮

C

−y

2
dx +

x

2
dy.

By Green’s Theorem for a C1 vector field ~F = M(x, y)~ı+N(x, y)~ defined
on a region D in the plane bounded by a closed, simple curve C = ∂D,∮

C

M dx + N dy =

∫∫

D

(
∂N

∂x
− ∂M

∂y

)
dA.

Hence,∮

C

−y

2
dx +

x

2
dy =

∫∫

D

(
∂

∂x

(x

2

)
− ∂

∂y

(
−y

2

))
dA

=

∫∫

D

(
1

2
−

(
−1

2

))
dA =

∫∫

D

dA = area(D).

(b) Left as an exercise.
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Question 5. [20 points] Let f : R3 → R be C2 on S, a compact, piecewise smooth orientable surface. Show∮

∂S

(f∇f) · d~s = 0.

Solution:

For f given as above, and ~x = (x, y, z), the integrand is a vector field:

f∇f(~x) =

(
f(~x)

∂f

∂x
(~x), f(~x)

∂f

∂y
(~x), f(~x)

∂f

∂z
(~x)

)
.

Hence, this integral is a vector line integral about the closed curve ∂S.
The surface S and the vector field satisfy Stoke’s Theorem, so∮

∂S

(f∇f) · d~s =

∫∫

S

∇× (f∇f) · d~S.

For the first component of the vector field ∇× (f∇f), we have

∇× (f∇f) ·~ı =
∂

∂y

(
f(~x)

∂f

∂z

)
− ∂

∂z

(
f(~x)

∂f

∂y

)

=

(
∂f

∂y

∂f

∂z
+ f(~x)

∂2f

∂y∂z

)
−

(
∂f

∂z

∂f

∂y
+ f(~x)

∂2f

∂z∂y

)
= 0

since f is C2 and mixed partials are equal. The other two component
calculations similarly vanish.

Hence the vector field ∇ × (f∇f) = ~0 (the original vector field f∇f is
irrotational), and by Stoke’s Theorem, the result follows.
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Possibly helpful formulae

•
∫∫

∂D

~F · d~S =

∫∫∫

D

∇ · ~F dV

•
∫∫

D

∇× ~F d~S =

∮

∂D

~F · d~s

•
∫∫

D

∇× ~F · ~k dS =

∮

∂D

~F · d~s


