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Question 1. [25 points] Let F ;R2 → R2 be given by the expression F (x, y) = (sin(xy), xy + y).
Do the following:

(a) Compute the derivative of F .

(b) Determine whether it is possible to invert the system of equations (u, v) = F (x, y) to
solve for x and y as a function of u and v in a neighborhood of the point (π, 1).

(c) Along the differential path in R2 given by c(t) = (t2, 3t − 2), write an expression for
dF

dt
and evaluate

dF

dt

∣∣∣∣
t= 2

3

.

Solutions:

(a) DF =

[
y cos(xy) x cos(xy)

y x + 1

]
.

(b) First, since the two component functions of F are C1 (really, they are
C∞) on all of R2, so is F . Also,

DF (π, 1) =

[
cos(π) π cos(π)

1 π + 1

]
=

[ −1 −π
1 π + 1

]
.

The determinant of this (which is the Jacobian of F at (π, 1)) is

det DF (π, 1) = −π − 1 + π = 1 6= 0.

Hence by the Inverse Function Theorem, there is a neighborhood of
(π, 1) on which F is one-to-one onto its image and with a differentiable
inverse. This means that there is a C1 function G defined near F (π, 1) =
(0, π + 1) where G(u, v) = (x, y).

(c) You can do this two ways (although there are the same way, really).
One way is the following:

dF

dt
= D(F ◦ c)(t) = DF (c(t)) Dc(t)

=

[
y(t) cos (x(t)y(t)) x(t) cos (x(t)y(t))

y(t) x(t) + 1

] [
2t
3

]

=

[
(3t− 2) cos (t2(3t− 2)) t2 cos (t2(3t− 2))

(3t− 2) t2 + 1

] [
2t
3

]

=

[
2t(3t− 2) cos (t2(3t− 2)) + 3t2 cos (t2(3t− 2))

2t(3t− 2) + 3(t2 + 1)

]
.

And
dF

dt

∣∣∣∣
t= 2

3

= D(F ◦ c)

(
2

3

)
=

[
4
3
13
3

]
.

The other way is to consider (F ◦ c) as just another differentiable path,
and differentiate with respect to t component-wise.



2 please show your work or explain your reasons

Question 2. [15 points] Let ~a, ~b, ~c ∈ R3.

(a) If ~a +~b + ~c = 0, show ~a×~b = ~b× ~c.

(b) If (~a×~b) · ~c = 0, describe any and all geometric relationships between the three vectors.

Solutions:

(a) This fact can certainly be established coordinate-wise. However, it is

easiest to see that since ~a +~b + ~c = 0, it follows that ~c = −~a−~b. Thus

~b× ~c = ~b×
(
−~a−~b

)
= ~b× (−~a) +~b×

(
−~b

)
= −

(
~b× ~a

)
+~0 =

(
~a×~b

)

by the various properties of the cross product.

(b) First, this statement will be true if at least one vector is the zero-
vector. Aside from that, the statement will be true if ∃k 6= 0 such that

~a = k~b. Then the cross product is the zero-vector. Aside from that, the

vector ~a×~b may be orthogonal to ~c. This would happen if ~c was part of

the plane defined by ~a and ~b. That is, ∃k, ` not both 0 (since we assume

now that ~c 6= ~0) such that ~c = k~a + ~̀b.
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Question 3. [20 points] For F (x, y, z) = y3−xz−x a real-valued function of three variables and p = (1, 2, 7)
a point in R3, do the following:

(a) Evaluate ∇F .

(b) Calculate the directional derivative of F at p in the direction v = (−2, 1,−2).

(c) Find the equation for the tangent plane to the zero-level set of F at p.

(d) Find a point on the zero-level set of F where the tangent plane is parallel to the xy-plane.

Solutions:

(a) ∇F =

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
=

(−z − 1, 3y2,−x
)
.

(b) DvF (p) = ∇F (p)· v

||v|| =
(−(7)− 1, 3(2)2,−(1)

)·
(
−2

3
,
1

3
,−2

3

)
=

16 + 12 + 2

3
=

10.

(c) The equation of the tangent plane to F at p is

∇F (p) · (x− 1, y − 2, z − 7) = (−8, 12,−1) · (x− 1, y − 2, z − 7) = 0.

Thus the equation is

−8(x− 1) + 12(y − 2)− (z − 7) = 0 or − 8x + 12y − z = 9.

(d) For the tangent plane to any level set of F to be parallel to the xy-
plane, ∇F would have to be “vertical”, or (0, 0, r) for some r 6= 0. This
means that y = 0, z = −1, and x = ±r 6= 0 given the answer in (a). So
on the zero-level set, we get the equation

F (x, 0,−1) = 0

which we need to solve for a non-zero x. But this equation is solved
for ANY x, since

F (x, 0,−1) = 03 − x(−1)− x = x− x = 0.

Hence choose any point (x, 0,−1) where x 6= 0 (this ensures that the
normal vector is non-zero) and this point is on the zero-level set and
the tangent plane is “horizontal”. Two good follow up questions: 1)
what happens at the point (0, 0,−1) and 2) what does the zero-level set
look like near any point on the line (x, 0,−1)?
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Question 4. [25 points] Suppose that w = g

(
x

y
,
z

y

)
is a differentiable function of u =

x

y
and v =

z

y
. Show

that for ~x = (x, y, z) ∈ R3, the operator ~x · ∇ vanishes on w. That is, show that

~x · ∇(w) = x
∂w

∂x
+ y

∂w

∂y
+ z

∂w

∂z
= 0.

Solution: By the Chain Rule, we get immediately that

∂w

∂x
=

∂g

∂u
· ∂u

∂x
=

∂g

∂u

(
1

y

)

∂w

∂z
=

∂g

∂v
· ∂v

∂z
=

∂g

∂v

(
1

y

)

∂w

∂y
=

∂g

∂u
· ∂u

∂y
+

∂g

∂v
· ∂v

∂y
=

∂g

∂u

(
− x

y2

)
+

∂g

∂v

(
− z

y2

)
.

Thus

~x · ∇(w) = x

(
∂g

∂u

)(
1

y

)
+ y

[
∂g

∂u

(
− x

y2

)
+

∂g

∂v

(
− z

y2

)]
+ z

(
∂g

∂v

)(
1

y

)

=

(
x

y
− x

y

)(
∂g

∂u

)
+

(
z

y
− z

y

)(
∂g

∂v

)

= 0.
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Question 5. [15 points] A particle moves in R3 so that its acceleration is a constant −k. If the particle’s
initial position at t = 0 is (−1, 0, 2) and its velocity at t = 0 is the vector i + j.

(a) When does the particle hit the z = 0 plane (the floor?)

(b) Where does it hit the floor?

(c) Express the distance the particle travels between t = 0 and the moment it hits the floor as an
integral of time alone (you do not need to solve the integral).

Solutions: The acceleration vector is simply the second derivative of the

displacement vector, which in this case is the path c : [0,∞) → R3. Hence
a = a(t) = (0, 0,−1) = c′′(t). To find c, simply find the second antiderivatives
of each of the components separately (this is just Calculus I stuff), and
use the initial data to find the constants. Thus v(t) = (R1, R2,−t + R3) for
R1,R2, R3 the three constants of integration. And since v(0) = (1, 1, 0), we
get that R1 = R2 = 1 and R3 = 0, so that v(t) = (1, 1,−t). Do this again to

get c(t) =

(
t− 1, t,−t2

2
+ 2

)
.

(a) Simply solve for the z-component of c to be zero. Hence 0 = −t2

2
+ 2,

which is solved for t = 2.

(b) c(2) = (1, 2, 0).

(c) The arclength of c from t = 0 to t = 2, is
∫ 2

0

√
(x′(t))2 + (y′(t))2 + (z′(t))2 dt =

∫ 2

0

√
2 + t2 dt.


