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Here we prove a special case of the Implicit Function Theorem for a C! real-valued function
on X C R3. The generalization to a real valued-function on R" is straightforward. The
generalization to vector-valued functions is a bit more involved, but similar.

Theorem. Let F': X C R3 — R be of class C' and let a = (ay,as,a3) be a point of the
level set S = {(x,y,2) € R}|F(z,y,z) =c}. If F.(a) # 0, then there is a neighborhood U
of (ay,az) in R%, and a C'-function f : U C R* — R such that if (z,y) € U satisfies
F(z,y, f(x,y)) =c (i.e., (x,y,2) €S), then z = f(z,y).

Proof. To prove this, we can actually construct the function z = f(z,y). First, we will
need two assumptions, which will result in no loss of generality: 1) Assume ¢ = 0, and 2)
F.(a) = %—5 (ay,a9,a3) > 0. The first is easy to assume since if F'(a) = ¢ # 0, you could
easily replace F' with a function G = F' — ¢, resulting in a function with identical properties

and a is on the O-level set of G. I will get to why the second assumption is useful presently.

Since F, (a1, as, ag) > 0, it follows by the continuity of the partial derivatives that F,(z,y, z) >
0 in a small neighborhood U of a. Make this neighborhood a small enough closed, cubic
d-set about a:

U(a) = U(ay,as,a3) = {(x,y, z) €R?

|z —a1] <0, |y —as| <6, ]z—a3]§5}.

(The reason for the rectilinear set will make the idea a bit easier.)

Now, since F,(ay,aq,a3) > 0 and F(ay,as,a3) = 0, it follows that for every r where 0 <
r < §, we have F(ay,as,a3 —r) < 0 and F(aj,as,a3 +r) > 0. You can look at the
function F(ay,as,2) as a function of one variable; Call it F(aq,aq,2) = G, 4(%) defined
on the interval z € [a3 — 0, a3 + 0]. Again, since %—Z > 0, this means that G, ,,(z) > 0 on
z € |az — d,a3 + 9], and G, 4,(2) is a strictly increasing function. A good way to visualize
it is to think that the vertical line (ay, as, 2) is cutting through the level sets of F'. This is
true because the gradient of F' on U always has a component in the z-direction. Hence it is
never perpendicular to the image of the line (ay, as, z), for z € [ag — ¢, az + 0]. Of course, we

have Gy, 4,(a3) = 0 since G, 4,(a3) = F(a1,az2,a3) = 0 by assumption.

Now, let (z,y) be ANY point, where = € [a; — d,a; + 0], and y € [ag — d,as + d] (these
comprise all of the x and y coordinates of the points in U(a) when z is within § of a3). Then
we can form a new function G, ,(z) = F(z,y, z), again defined on z € [ag — 0, a3 + 6]. This
function G, ,(2) is continuous in z, strictly increasing and G, ,(as—0) < 0 and G, ,(az+6) >

0 (Why is this the case? Think about this one.) By the Intermediate Value Theorem (yes,
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the one from Calculus I), there must be a unique value of z where G, ,(2) = 0. Since this
is true for any choice of (z,y) as above, we get an assignment (x,y) — z at all points
(x,y,2) € U(a). This is our desired choice for z = f(x,y).

To see that this choice of f is C', consider what its derivative will be: We have the C*
function

Recall the tangent hyperplane to the level set of a function
given by VF - (x —a) = 0. Written out, this means

@l = )+ S (@)~ ax) + S (@)~ ax) = .

= 0.
F(x,y,z) at a point a € R? is

Solving for z, and knowing that %—f(a) # 0, we get

O (a) 5 (@)

. dy
z=as+ (x —a1) + ———(y — ag),
—9%(a) —98(a)

we can equate the quantities to what we know the tangent space to the graph of a function
z = f(z,y) would be. Indeed, a3 = f(ay,az) and

0 0
z = f(ay,a2) + a—i(al,az)(x —a1) + a—;(al,ag)(y — as).

Hence we have at a,

) — 5 (@) 0 @
a—i(al,&z) = é(a) , and 8_£<a1’a2) B _?j—f(a)'

And since this also work for all points on the level set in U(a), the function z = f(z,y) is ¢!
on U(a).
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