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Here we prove a special case of the Implicit Function Theorem for a C1 real-valued function
on X ⊆ R3. The generalization to a real valued-function on Rn is straightforward. The
generalization to vector-valued functions is a bit more involved, but similar.

Theorem. Let F : X ⊆ R3 → R be of class C1 and let a = (a1, a2, a3) be a point of the
level set S = {(x, y, z) ∈ R3|F (x, y, z) = c}. If Fz(a) ̸= 0, then there is a neighborhood U
of (a1, a2) in R2, and a C1-function f : U ⊆ R2 → R such that if (x, y) ∈ U satisfies
F (x, y, f(x, y)) = c (i.e., (x, y, z) ∈ S), then z = f(x, y).

Proof. To prove this, we can actually construct the function z = f(x, y). First, we will
need two assumptions, which will result in no loss of generality: 1) Assume c = 0, and 2)
Fz(a) = ∂F

∂z
(a1, a2, a3) > 0. The first is easy to assume since if F (a) = c ̸= 0, you could

easily replace F with a function G = F − c, resulting in a function with identical properties
and a is on the 0-level set of G. I will get to why the second assumption is useful presently.

Since Fz(a1, a2, a3) > 0, it follows by the continuity of the partial derivatives that Fz(x, y, z) >
0 in a small neighborhood U of a. Make this neighborhood a small enough closed, cubic
δ-set about a:

U(a) = U(a1, a2, a3) =

{
(x, y, z) ∈ R3

∣∣∣∣ |x− a1| ≤ δ, |y − a2| ≤ δ, |z − a3| ≤ δ

}
.

(The reason for the rectilinear set will make the idea a bit easier.)

Now, since Fz(a1, a2, a3) > 0 and F (a1, a2, a3) = 0, it follows that for every r where 0 <
r ≤ δ, we have F (a1, a2, a3 − r) < 0 and F (a1, a2, a3 + r) > 0. You can look at the
function F (a1, a2, z) as a function of one variable; Call it F (a1, a2, z) = Ga1,a2(z) defined
on the interval z ∈ [a3 − δ, a3 + δ]. Again, since ∂F

∂z
> 0, this means that G ′

a1,a2
(z) > 0 on

z ∈ [a3 − δ, a3 + δ], and Ga1,a2(z) is a strictly increasing function. A good way to visualize
it is to think that the vertical line (a1, a2, z) is cutting through the level sets of F . This is
true because the gradient of F on U always has a component in the z-direction. Hence it is
never perpendicular to the image of the line (a1, a2, z), for z ∈ [a3 − δ, a3 + δ]. Of course, we
have Ga1,a2(a3) = 0 since Ga1,a2(a3) = F (a1, a2, a3) = 0 by assumption.

Now, let (x, y) be ANY point, where x ∈ [a1 − δ, a1 + δ], and y ∈ [a2 − δ, a2 + δ] (these
comprise all of the x and y coordinates of the points in U(a) when z is within δ of a3). Then
we can form a new function Gx,y(z) = F (x, y, z), again defined on z ∈ [a3 − δ, a3 + δ]. This
function Gx,y(z) is continuous in z, strictly increasing and Gx,y(a3−δ) < 0 and Gx,y(a3+δ) >
0 (Why is this the case? Think about this one.) By the Intermediate Value Theorem (yes,
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the one from Calculus I), there must be a unique value of z where Gx,y(z) = 0. Since this
is true for any choice of (x, y) as above, we get an assignment (x, y) −→ z at all points
(x, y, z) ∈ U(a). This is our desired choice for z = f(x, y).

To see that this choice of f is C1, consider what its derivative will be: We have the C1

function
F (x, y, f(x, y)) = F (x, y, z(x, y)) = 0.

Recall the tangent hyperplane to the level set of a function F (x, y, z) at a point a ∈ R3 is
given by ∇F · (x− a) = 0. Written out, this means

∂F

∂x
(a)(x− a1) +

∂F

∂y
(a)(y − a2) +

∂F

∂z
(a)(z − a3) = 0.

Solving for z, and knowing that ∂F
∂z
(a) ̸= 0, we get

z = a3 +
∂F
∂x
(a)

−∂F
∂z
(a)

(x− a1) +

∂F
∂y
(a)

−∂F
∂z
(a)

(y − a2),

we can equate the quantities to what we know the tangent space to the graph of a function
z = f(x, y) would be. Indeed, a3 = f(a1, a2) and

z = f(a1, a2) +
∂f

∂x
(a1, a2)(x− a1) +

∂f

∂y
(a1, a2)(y − a2).

Hence we have at a,

∂f

∂x
(a1, a2) =

−∂F
∂x
(a)

∂F
∂z
(a)

, and
∂f

∂y
(a1, a2) = −

∂F
∂y
(a)

∂F
∂z
(a)

.

And since this also work for all points on the level set in U(a), the function z = f(x, y) is c1

on U(a).
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