
THE DIFFERENTIAL

110.211 HONORS MULTIVARIABLE CALCULUS
PROFESSOR RICHARD BROWN

Recall that for a variable x, a small change in x is denoted ∆x = (x+ h)− x = h, where
h is a number near 0. As the value of h tends to 0, ∆x also vanishes. But we can mark the
vanishing of ∆x via what is called an infinitesimal change in x, and denote it dx, so that

∆x
h→0−−−−→ dx.

Really, this has meaning mostly in the context of how other quantities change that depend
on x. dx is called he differential of x.

Now let f : X ⊂ R → R be a differentiable function, and a ∈ X. For the graph y = f(x),
the quantity

∆y = ∆f = f(x+∆x)− f(x).

As h → 0, ∆f tends to df = dy. Just how the dependent variable y is changing as one
varies x is important in the study of functional relationships between entities, and is the
motivation behind the Liebniz notation in calculus dy

dx
= df

dx
= d

dx
f(x). Note that as an

alternate definition, one can call the quantities dx, and dy actual new variables, whose
relationship is tied to the relationship between y and x, namely y = f(x). This alternate
definition provides a much more concrete foundation for which to use these quantities, but
structurally does not change their meaning.

The quantity df is called the differential of f , and represents an infinitesimal change in f
given an infinitesimal change in its independent variable x: at x = a, we have

df = f ′(a)dx, or df(a) = f ′(a)dx

to reflect the idea that this differential will change as we vary the point x = a.
Some notes:

• This will make more sense later, when we discuss differential forms, but the differential
of f , df , is a differential 1-form.

• This concept embodies the Substitution Rule (the Anti-Chain Rule) in single variable
calculus: ∫ b

a

f (g(x)) g′(x) dx
u=g(x)−−−−−−−−→

du=g′(x) dx

∫ g(b)

g(a)

f(u) du.

Indeed, let f be a function of u, so that at u = α,

df(α) = f ′(α) du =

(
f ′(u)

∣∣∣∣∣
u=α

)
du.

If u = u(x) is also a function of x, we can then write f as a function of x: f (u(x)).
It’s differential, then, also varies as x varies. For u = u(x), where u(a) = α for some
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a, we have du = u′(x) dx, and

df(α) =

(
f ′(u)

∣∣∣∣
u=α

)
du =

(
f ′(u)

∣∣∣∣
u(a)=α

)(
u′(x)

∣∣∣∣
x=a

)
dx = (f ◦ u)′ (a) dx.

Really, the differential here is the differential of the composition, but we can view
the differential of f simply as a function of x, and write write

df(a) = (f ◦ u)′ (a) dx.
In many variables, let f : X ⊂ Rn → R be a differentiable function, and a ∈ X. df is the

sum of the partial differential forms (differential forms in the coordinate directions), ∂f
∂xi

dxi,
and

(1) df =
∂f

∂x1

dx1 + . . .+
∂f

∂xn

dxn =
n∑

n=1

∂f

∂xi

dxi.

This quantity represents an infinitesimal change in f in terms of its coordinate changes dxi.
As a function, ∆f = f(a + ∆x) − f(a) = f(a + h) − f(a), where ∆x = h is a vector

of small changes in each of the coordinate directions. Written out, ∆f will contain many
terms which are not linear in ∆x. As ∆x tends to 0, only the linear parts of these terms
will survive terms die off (the higher-degree terms will die off quickly, leaving only the linear
terms). One can then see directly how the differential of a function operates:

Example 1. Let f : R2 → R be given by f(x, y) = x2 + xy − x − y + sin x. Here ∆x =
(∆x,∆y))T , and

∆f(π, 0) = f
(
(π, 0)T + (∆x,∆y)T

)
− f(π, 0)

= (π +∆x)2 + (π +∆x)(∆y)− (π +∆x)−∆y + sin (π +∆x)− π2 + π

= π2 + 2π∆x+ (∆x)2 + π∆y +∆x∆y − π −∆x−∆y − sin(∆x)− π2 + π.

Notice here that all of the terms not containing a ∆x or a ∆y cancel out. Notice also
that for very small values of ∆x, the function sin(∆x) ≈ ∆x. This is called a first-order
approximation of the sine function near x = 0 (recall this from single variable calculus.
Likewise, for very small values of ∆x and ∆y, all of the other higher-order terms vanish
double fast, leaving only the linear terms:

∆f(π, 0) = (2π − 1)∆x−∆x+ (π − 1)∆y = (2π − 2)∆x+ (π − 1)∆y.

Passing to the infinitesimals, we get ∆f −→ df , and ∆x −→ dx = (dx, dy)T , and we get

df(π, 0) = (2π − 2) dx+ (π − 1) dy.

Now compare this to the direct computation, using Equation 1 above. Here

∂f

∂x
(π, 0) = (2x− y − 1 + cos x)

∣∣∣∣x=π
y=0

= (2π − 2)

and
∂f

∂y
(π, 0) = (x− 1)

∣∣∣∣x=π
y=0

= (π − 1).

The result is the same.


