Extra Problems: EP1, EP2

EP1 Do the following:

• Show the function $f: \mathbb{R}^n \to \mathbb{R}^m$ is injective if at least one of its component functions is injective. An easy was to see this is to show the contrapositive: If f is not injective, then all of its components are not injective. To see this, let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ be two points where $\mathbf{x} \neq \mathbf{y}$, but

$$f(\mathbf{x}) = \mathbf{a} = (a_1, \dots, a_m) = f(\mathbf{y}).$$

But then for any component $f_i : \mathbb{R}^n \to \mathbb{R}$, $f(\mathbf{x}) = a_i = f(\mathbf{y})$, and hence none of the components are injective. To further explore this idea, think about whether any function from \mathbb{R}^n to \mathbb{R}^m can be injective when n > m.

• Show f is surjective if all of its components are surjective. This is patently false. Consider the function $f: \mathbb{R}^3 \to \mathbb{R}^2$ defined by f(x,y,z) = (x,x). Here, each of its component functions $f_1(x,y,z) = f_2(x,y,x) = x$ is surjective, but the point $(1,2) \in \mathbb{R}^2$ is not in the image of f. What is true is the converse of the stated problem: If f is surjective, then all of its components are surjective. One proof of this is to assume f is surjective and assume one component is not. You can easily then produce a point not in the image of f, resulting in a contradiction.

EP2 Let \vec{a} and \vec{b} be two vectors in \mathbb{R}^3 which are not on the same line, so that the equation $\vec{x} = s\vec{a} + t\vec{b} + \vec{c}$ defines a plane parameterized by the two real variables s, t. Given the non-parameterized equation of the plane Ax + By + Cz = D, write the constants A, B, C, D in terms of \vec{a} , \vec{b} , and \vec{c} .

In the parameterized plane, the numbers s and t are the coordinates, the coordinate axes are the lines containing the vectors $\vec{a} = (a_1, a_2, a_3)$ and $\vec{b} = (b_1, b_2, b_3)$ suitably parallel-transported to the point $\mathbf{c} = (c_1, c_2, c_3)$ (so that the origin of the parameterized plane is at \mathbf{c}). Also, the coordinate system on the plane uses \vec{a} and \vec{b} as the unit vectors, no matter their actual lengths.

To find the non-parameterized version of the plane, note that $\vec{n} = \vec{a} \times \vec{b}$ is the normal to the plane, and we will call $\vec{n}_{\mathbf{c}}$ the normal based at \mathbf{c} . A point $\mathbf{p} = (p_1, p_2, p_3)$ is in the plane if the displacement vector $\overrightarrow{\mathbf{pc}}$ is perpendicular to \vec{n} (this means $\vec{n}_{\mathbf{c}} \cdot \overrightarrow{\mathbf{cp}} = 0$). Hence we have

$$\vec{n} = (A, B, C), \quad D = Ac_1 + Bc_2 + Cc_3,$$

where

$$A = (a_2b_3 - b_2a_3), \quad B = (a_3b_1 - a_1b_3), \quad \text{and } C = (a_1b_2 - b_1a_2).$$

Date: February 13, 2008.