EXAMPLE: SECTION 7.2: TRIGONOMETRIC INTEGRALS

110.109 CALCULUS II (PHYS SCI & ENG)
PROFESSOR RICHARD BROWN

Question 1. Calculate [ sin® z cos? z dx.

Note. This is an example of a trigonometric Integral of the form [ sin™ x cos™ xdx. When

one of n,m € N is odd, stripping off one of the odd factors to set up a simple substitution is
detailed in the book. However, when both m and n are even, one must be a bit more clever.
Here, we make use of the reduction formula for the antiderivative of positive powers of sin x.

Proof. Using the identity sin? z+cos? 2 = 1, we can rewrite this integral is a sum of integrals
of powers of the sine function:

. . . 2
/sm2 zcost v dr = /sm2 T (1 — sin? a:) dx

= /sian (1 — 2sin?x + sin? x) dx

:/sinzwd:ﬂ—2/sin4xdzx+/sin6xd:p.

This is helpful since the reduction formula
Y 1) L. n—1 con—2
sin"xdr = ——sin"" " xcosr + [ sin" “xdr
n

allows us to “reduce” the degree of the integrand using the Integration by Parts technique.
Doing this a few times will allow us to actually come up with a nice expression for the
anti-derivative of the function sin?z cos* x. The first (and best) step would be to use the
reduction formula on the largest degree integrand (why?). This way, the “reduced” expres-
sion will have an integrand similar to another summand in your expression. You can then
combine them. So

/sin2:ccos4azd:c:/sianda:—2/sin4xd:c+/sin6xda:
.. 92 .4 1. 5 2 s 4
= [ sin“xdr —2 | sin"xdx + —ésm xcosx+6 sin® x dx

7 1
:/sin2:cd$—6/sin4xd:v—681n5xcosx.
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Do you see why this works, and how your life is easier now? The integrand to the 6th power
is gone. We now continue by reducing the next right-most integrand: So

. . 7 . 1 .
/81n2xcos4a:da::/sm2:1:dx—6 sm4xd:1;—6s1r15xcosx

1 1
:/sin2wd:r—g(—4sin3xcos:n—|—i/sin2xdx) —gsin5xcosx

7 21 1
= [ sin’zdr+ —sin®xcosz — — [ sin?zdx — = sin® z cos .
24 24 6

= — [ sin’zdx + lsixf’mcosm — 1sin“r’xcosx
24 24

*i —1sinxcosx+1/sin0mda¢ +lsin3xcosx—lsin5xcosw
24\ 2 2 24 6

3 3 T 1 .
= — — ——SIMIXCOST — SN T COST — — S1n
24 6

== 18 xcosz + C.

Now, as a check, we show that

— | —= — — SINITCOST — SIN X COST — — SN~ X COST = S rcos xI.
dr |48 48 24 6
Here
i ix— isinascosas—i—lsinsaccosac—lsinsaccosac—i—C’
dr |48 48 24 6
= if— (costfsin2 :c)+l(3sin2xc052mfsin4x) 71 (5sin4xc052xfsin6 m)
48 48 24 6
_i,i . .2 l 2 .4 71 4 . 6
TIRPT (1 2sin x)Jr 21 (3sm r — 4sin :r) 6 (5sm r — 6sin :r)
—i—i+—sin2x+§3in2x—§s1n4a:—§sin4x+sin6:r
T 48 48 48 24 24 6

. 2 .4 .6

=sin“z — 2sin" x +sin”
.2 .2 .4

= sin m(l—QSln x + sin x)
.2 .2 2

= sin ac(l—sm x)

.2 4
=S I COS x.



