110.109 CALCULUS II

Week 8 Lecture Notes: March 28 - April 1

LECTURE 1: SECTION 10.2 SERIES

Today we start the discussion on a series, basically the sum of the terms of a sequence:

Definition 1. The sum of all of the terms in a sequence {a,} is called an (infinite) series, and denoted

oo
Zan:a1+a2+~-~+an+-~- or simply Zan.

n=1
Note that sometimes this sum doesn’t exist:

oo o0
an, =mn, so that Zanzzn:1+2+3+...:oo’
n=1 n=1
and sometimes it does:

1 > =1 1 1 1 1
an = 5 Here T;an: —=—+4+-—+-4+—=+---=177

n=1
To see geometrically this “sum”, look on the number line. Adding % to 0 and then successively adding half
of the previous amount in turn, notice how you will never exceed 1. Yet if you believe that you will finish
somewhere before 1, convince yourself that you will eventually pass that number. This looks like a limit-type
process and you are correct. The sum is indeed 1, but to see this will take a bit of work.

First, denote by s,, the nth partial sum of the series

(o)

1 1

2 rl 1 P! E an, SO that

A /——A—\,—M,—h . n—1
f f f —+—
0 I 3z 1g n

2 4 8 1 _ _
snfg a; = a1 +as + -+ ay.

i=1
As we push n toward oo, these partial sums will tend toward a total sum, at least when the sum actually
exists.

Example 2. For a, = 2%, we have

1 1 1 3 11 7
T TR ITY BTt ITs TR
Do you sense a pattern? We have
NS SN S SUNPRS T
" 4 2n 2n 2n

For a given series, the set of all partial sums forms a new sequence {s,}.- ;. We can say that where this
sequence goes, so will go the series.
Definition 3. Given a series > -, a, with its associated sequence of partial sums {s,}, if lim s, = s
n—oo

exists (so that {s,} is convergent), then the series is convergent and

o0

Zan = lim s, = s.

n—oQ

n=1

We call s the sum of the series, if it exists. If the sum does not exist, we say that the series is divergent.
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Example 4. Again, back to a,, = 2% we have
= 1 1 1
E — = lim s, = lim 1 — — = lim 1 — lim —,
—_ on n—o00 n—o00 n n—o0 n—oo 21

as long as the two limits on the right hand side exist. They do, and

1 . . 1
Z—: Im1— lim —=1=0=1.
n:12 2

The series is convergent and its sum is 1.

Definition 5. A series of the form
oo
atar+ar?+---far" 4= Zar"_l, a /-0,
n=1
is called a geometric series.

In a geometric series, each term is the product of the previous term and the factor r, so that the terms
of the series look like a,,+1 = ra,, for all n € N. As an example, the previous series we have been discussing,

namely
o'} 1 oo 1 n 00 1 1 n—1
>a=2(5) =23 (5)
n=1 n=1 n=1

is geometric with a = % and r = %

A huge question involving a series in general, and a geometric series in particular, is: Does the series
converge? To answer this, we need to appeal to the sequence of partial sums. Let’s look specifically at how
the value of r determines whether the geometric series converges or not.

Case 1. Let r = 1. Then for a # 0 (there is not much to discuss in the case that a = 0, no?) the series
oo oo
Z ar"t = Z a. The partial sum is then
n=1 n=1
Sp,=a+a+---+a=na,
and

lim s, = lim na=a lim n = co.
n—oo n—oo n—o0

Hence the series diverges.

Case 2. Let r # 1. Here then the series has its partial sum
Spn=a+ar+ar®+- - +ar" L
This is not so easy to manage, but there are clever ways to play with this expression. Here is one; note that
rs, =ar+ar’>+ar® + -+ ar”.
Then
Sp — TSy, =a —ar”,
since all of the other terms cancl out (this is why the difference here is clever!). Now, solve for s, to get
sn(1—=7r)=a(l—7r"), or
a(l—1r")
1—r

Sp =



So does the series with this partial sum sequence converge? we have

1 _ n
lim s, = lim a(l=r") =2 lim 1—7",
n—o00 n—oo 1 —17 1—7rn-00

which will converge precisely when |r| < 1, and diverge precisely when |r| > 1.

Note: As a special case, let r = —1. Then lim 1 — " does not converge, but not because the sequence
n—oo

of partial sums gets large. Instead, here,
5 _a(l—r") [ a ifnisodd
" 1—py ] 0 ifniseven
The sequence of partial sums does not exist here, even though the sequence is bounded. Hence it is still the
case that the geometric series diverges for r = —1.

LECTURE 2: SECTION 10.2 SERIES (CONT’D.)

Here are some examples of geometric series that you have already played with.

Example 6. Ezponential Functions. Let f(x) = b®, where b > 0. Then we can create a sequence
an = f(n) = b™. This sequence is geometric, with the initial constant a = b, and the base r = b, and

ian = ibn = ib(b)"‘l.
n=1 n=1 n=1

Again, this series will converge iff b < 1. Thus, there is a close relationship between exponential functions
and geometric series. we say that exponential function are examples of geometric growth.

Exercise 1. Find a value for b so that the series Z b, = 5.

n=1

Solution. While this may seem straightforward, there is one thing to consider. To use the sum formula for
a geometric series, it is absolutely necessary to correctly identify the values for a as well as r: Here again

Z bn = Z b(b)n_l )
n=1 n=1

so that a = r = b. Now we can use the folmula

> _ b
0 e —
2O =gy =0

The last equation is easy to solve with a little algebra, and we find b = 2 (check this!).

Example 7. Decimal representations are geometric series. the rational number 8 has the decimal represen-
tation .555555, where the bar over the last 5 indicates that the pattern continues. But recall the definition
of a decimal representation means that

- 5 5 5)
595895 = — + — + —— + .
10 + 100 + 1000 +

.. . . . 5 1
This is simply a geometric sequence with a = 15 and r = {5,

00 n—1
— 1
.555555 = i () .

and



4

Notice again that this geometric sequence converges since |r| = |%} < 1. And it converges to the quantity

-2 which in this case is
i 5 ( 1 )”‘1 a Z 2 5
—_ —_— = = 1 = T = -,
— 10 \ 10 1—7r 10 9

1—r?

as it should.

Example 8. Determine whether the series Z 52" (37" converges. If it does, then find the sum. Due

to the presence of the index variable n in thg eicponent, and not anywhere else, this series has a good chance
of being a geometric series, and if we can put it into the form of a geometric series (by correctly identifying
both @ and r), then perhaps we can answer the question. To this end, let’s try to manipulate the term
a, = 5(2"72)(37"*1). Here we have

371,—1 3
Notice that we have stripped out a 23 from 2”2, knowing that 23271 = 23+(n—1) — 9n+2 apq 3+l =

3—(n=1) = (%)n_l. Putting these together, we wind up with a term that meets the form of a geometric

series, with a = 40 and r = 2. This series converges since |r| < 1, and the sum is

0o 00 2 n—1 40

n+2 —n+1\ __ o _
D o5 )T =) 40 (3> =7 =12
n=1 n=1 3

n=1
1 2
an = 52" )37 ") =5.2% . 2771 =40 - () .

Now if the series is NOT geometric, then we cannot use the convergence criterion used above. We can still
appeal to the original notion that if we can find a good expression for the terms of the sequence of partial
sums s,, we cam try to determine if the sequence has a limit. If it does, then the series also converges and
to the limit of the sequence of partial sums.

Outside of this, sometimes one needs to simply be clever and look for patterns and structure to exploit to
see if a given series may converge or not. Examples 6 and 7 in the text are two good examples of this type
of cleverness. example 6 deals with a series called a telescoping series, where each succeeding pair of terms
of the series almost cancel each other out, leaving very little but a couple of terms in the partial sum. This
gives a useful expression for the partial sum and the convergence of the series is determined by analyzing
the sequence of partial sums.

In example 7, they study the Harmonic Series. Let’s do that one in detail:
oo
Example 9. The Harmonic Series. We saw that the series Z on converged, even though it was a sum

n=1
of an infinite number of positive numbers. The point was that the positive numbers were decreasing quickly

and quickly enough that the ultimate sums didn’t exceed (in this case) 1. Here, we introduce the harmonic
series

il—1+1+1+1+
~n 2 3 4 '

Here, the terms of the sequence are all still positive numbers which form a decreasing sequence, but they

decrease much more slowly. Also, there is no easy way to write out a useable expression for the partial sum
2 3 4 n

And the sequence is certainly not geometric.



It turns out that the series diverges, and in this case, that means that the sum is infinite. How to show
this involves showing that the sequence of partial sums eventually exceeds every integer. Indeed, we will do
this by limiting ourselves to only certain of the partial sums, and noting a useful pattern.

To start, notice that the first two partial sums have a pattern to them, if seen in a certain way:

0 1
8121214—57 and 82:1—}—5.

I like the pattern, and notice that if we skip to s4, we get

R I S (U (I R
STAT YTy o \1"1)”

Really, this says nothing more than the fact that s; > 2.

But there is a pattern here: If we pass to sg, we notice that

—1+1+1+1+1+1+1+1>1+1+ 1+1 + 1+1+1+1 —1+1+1+1—1+3
BT3RS 2 \17"1 8 8'8'8)  T2TaTaT T2
which means that sg > 2.5. We can continue this pattern by next looking at s1g and noting that it is strictly
larger than 1+ % = 3, then to s3o, noting that it is strictly larger than 1+ %, and generalizing to the pattern
that at the partial sum of the 2"th term, we have

n
82n>1+§.

Do you see how this is helpful. Say I wanted to know when the partial sum of the harmonic series pass the
sum of 100. Then I simply solve 100 = 1 + %, This give me n = 198. So then I know that the partial sum

So19s > 100.

Since I can do this for every number n, eventually, my partial sum of the harmonic series will pass every

integer. This means that lim s, = oo, so that the harmonic series diverges.
n—oo

By the way, do not worry about having to be so clever in finding ways to show that a series converges or
not. In time, you will develop such abilities. For now, know that there are many useful tools to determine
whether a series converges or not. The rest of this section and the next few will develop some of those ways.
Here is one:

(o]
Theorem 10. If the series Z an converges, then lim a, = 0.

n— 00
n=1

All this theorem really says is that the only way that a series can converge is if the sequence of partial
sums has a limit. That sequence of partial sums can only have a limit if the sequence tends to a number .
That means that the things we add to each partial sum to get the next one need to decay away to 0 as the
index n goes to infinity. Makes sense, but be very careful here:

CAUTION. The converse of this statement is NOT true!

oo

The statement: “If lim a, = 0, then E a, converges” is false! The harmonic series is one example
n— o0
n=1

where the terms go to 0, but the series diverges. Be very careful here.



Instead, the contrapositive of the theorem is true. The contrapositive of a conditional statement is formed
by negating both antecedent (the “if part) and the consequent (and “and” part), and switching them. We
get:

oo
Theorem 11. If lim a, # 0 (or does not exist), then the series Z ay, diverges.
n—oo

n=1
One can call this The Divergence Test for a series. It is very effective.

oo
1 2
Example 12. Show Z ;—in diverges. Here, we see
ot on

+ 6n

. . n? +1 1
dm o = lim o = = #0.

At this point, we know by the Divergence Test that the series will diverge.
Other conclusions to mention? Well, much like limits, series behave well in sums, differences, and the like
(after all, there ARE defined by limits of their partial sums).

Suppose > a, and b, are two convergent series (this only works when these sums are convergent).
Then

(1) ann = cZan converges, and
(2) Z ap, b, = Z an, + Z b, also converges.

Here, the symbol + means that when there is a “plus” on the left-hand side, there is also a plus on the
right, and when there is a “minus” on the left, three is also one on the right. This should all make sense,
but again, only if the individual sums exist. There is no need to prove this result. Just keep it in mind.

next time, we will do an example.

LECTURE 3

we start today with an example of the final result from last lecture.

o0

1 1

Example 13. Find the sum of g — + ——— |, if it exists. Here, trying to combine the two terms
—\e*  n(n+1)

in the sum will not create an easier fraction to study. However, with the previous result, we can try the
following: See if, when we rewrite the series as

(1 1 = 1
> (5 sprm) = 2
each of the two separate series on the right converge. If they do, then the original series will converge also,

and to the sum of the two individual series on the right. Only if the two on the right converge will this work,
but it is worth the effort.

_
1n(n+1)’



looks geometric,

n=1 6"

Let’s take each of the series on the right separately. First, notice that the series Y-
due to the fact that the only place we find the n is in the exponent. When we rewrite it:

0 1 001 1 n—1
Ya-xile)

we find that it is indeed geometric, with a = =, and r =
know that this series is %,
ot "_n:e e _1—é_€—1

1

For the second series, try to find a good expression for the partial sum
1
-4

- 1 1 1

- to3T3

S"Z;i(i—kl)_la

Good luck with that. Outside of this, try to use any structure found in the terms to possibly “uncover
something you can work with. for example, noting that this rational expression of n can be decomposed into

1 —
n n41

two simpler ones via a partial fraction decomposition, we get
1 1
n(n+1)

While this might not look like much help, go back to the partial sum
SR Loy Loy (rony, 1
— 1+ it1 \1 2 2 3 n n+l

=3
:1_n—::-1

since all of the intermediate terms cancel out. This is called a telescoping sequence, since each succeeding
term will kill off all or part of a preceding term. Hence we do have a good expression for the partial sum

So here s = > | m, if it exists, where
. . 1
s= lim s, = lim 1— =
Hence the second series also converges, and we have
> 1 e
1= .
+ Z n(n+1) e—1 + e—1

INCEE e RDIEDS
= (- ok

diverges, yet ) — n+1 => n

1
n

So here is a new question: We know that the series )

converges to 1.

n=1

Question 14. How about Z — 7
n



There is no simple expression for the partial sum

1 1 1 1 1
hEEtEtEtET T
I

4 9 16 n?

But notice the following:

The (unbounded) area between the curve of f(z) = 25 and the z-axis on the interval [1,00) is

< 1 b1 1\ b 1
/ 7dw=lim —de:lim (—)‘ =liml--=1.
1 b—oo J1 T b—o0 z/ 11 booo b

Hence the area of the region outlined in red is
>~ 1
1 x

o0
1
The block shaded region is a geometric representation of the infinite sum E — - The total area of the
n
n=1

o0
infinite number of blocks of length 1 and height #, is precisely the series Z % Notice that it is strictly
n=1
less than the area of the block red region. Hence we must have that
= 1
> — <2
n=1
This means that the series will converge. Why is this so. First, since the entire series is less than 2, each
partial sum will be less than 2. Hence the sequence of partial sums will be bounded by 2. Note that the
sequence of partial sums will also be a monotonic sequence (always adding a positive number each time.
Hence it must converge. Thus the series will converge. Now we do not know what it will converge to here
(actually, we do, and the sum is %2, but there is no way here to know that here), but just knowing that it
does converge is progress. And we found out by comparing to the improper integral of the function which,

in some way, generated the sequence.

o0
1
We can play the same game with the Harmonic Series Z —. Here is another figure. To study this series,
n
n=1
create the function f(z) = 1 so that our series is the sum of all of the terms a, = f(n) from 1 to co. By
graphically representing the series as the sum of the areas of the blocks here, we note that

1 >~ 1

Sis [ i

—n 1T
In this case, the right hand side IS co (the integral diverges). But then this means that the harmonic series
will also diverge (the sum will also be infinity) since it will be strictly larger than something that does not

converge. Again, we studied the series by instead comparing it to an improper integral. Where the integral
went, so went the series. We have the following:

Theorem 15. Suppose f(x) is a positive, continuous, and decreasing function on [1,00), and a, = f(n).
Then

St o)
Z a, converges iff / f(x)dz converges.
n=1 1



Some notes:

This is called the Integral Test for the Convergence of a Series.

This test is great for studying series whose terms look like a function one can integrate.

This test does not give the sum. While it is tempting to think the improper integral should also give
the sum, it does NOT in general.

Really, where a series starts is not important, and this test works also for series that start later than
1. See the next example.

o0 o0 o0
1 1

E le 16. W k that — , whil — di . What about 2 Thi

xample e now know tha ; —5 converges, while ; — diverges at abou 7;2 s is
one seems to be in between the two. Fortunately, we can use the Integral Test here: Let f(z) = ——. The
improper integral of f(z) is

/ f(m)dx:/ dx:/ — du.
9 o xlnx 2 U

The antiderivative of = on the interval [In2, 00) is Inu;.C. Hence the antiderivative of f(z) = —— on the

interval [2,00) is Inlnz. And does this antiderivative have a horizontal asymptote? You should work all of
this out, but the answer is no. Hence the integral diverges. Hence also the series diverges.

oo o0
1 1
Question 17. You know that E — converges. What about E —, when p > 27
n - np

n=2

en?

o0
Question 18. Show that Z converges by the integral test. Hint: You cannot do the resulting improper

n=2
integral directly, but you can use the Comparison test for Improper Integrals to help you. See previous lecture
notes.



