
110.109 CALCULUS II

Week 12 Lecture Notes: April 25 - April 29

Lecture 1: Section 10.10 Taylor and Maclauren series

Let’s go back to our geometric series, g(x) =
1

1− x
, expanded at a = 2:

g(x) =

∞∑
n=0

(−1)n+1(x− 2)n = −1 + (x− 2)− (x− 2)2 + (x− 2)3 − (x− 2)4 + · · · for − 1 < x < 1.

This time, call Tn(x) the nth Taylor polynomial of g(x), at x = 2. Here

T0(x) = −1

T1(x) = −1 + (x− 2) = x− 3

T2(x) = −1 + (x− 2)− (x− 2)2 = −x2 + 5x− 7

T3(x) = −1 + (x− 2)− (x− 2)2 + (x− 2)3

...
...

Tn(x) =
n∑

i=0

(−1)i+1(x− 2)i.

These polynomials are considered the “best” degree-n polynomials to approximate g(x) at and near the point
x = 2. The main reason is because they are the polynomials that have the same derivatives (up to order-n
for Tn(x) as that of g(x). This is by design, and the Taylor series is constructed using the derivatives. As
an example, it is a fact from Calculus I that the tangent line is the best linear approximation to a function

at a point (if it exists, that is). Here, notice that g(2) = −1, and g′(2) = d
dx

[
1

1−x

] ∣∣∣
x=2

=
[

1
(1−x)2

] ∣∣∣
x=2

= 1.

Thus

T1(x) = −1 + (x− 2) = g(2) + g′(2)(x− 2),

IS the equation of the tangent line and thus is the best linear function to approximate g(x) at x − 2. The
best quadratic will be T2(x) since it has the same 0th, 1st and 2nd derivatives as that of g(x) at x−2. Note the
graph:
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Given that each Tn(x) is just the partial sum of

the series (and where the series converges, we have
the series equals g(x)), we get that lim

n→∞
Tn(x) = g(x)

(on the interval of convergence). Keep in mind here
that the partial sums, as well as the series still include
the unspecified variable x. Hence each is really still a
function of x.

How one shows that the limit of the Taylor poly-
nomials (as n goes to ∞) is the function also gives a
way of estimating just hoe good an approximation to
g(x) the nth Taylor polynomial is: Let

Rn(x) = Tn(x)− g(x)
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be the remainder of the nth Taylor polynomial. It is again a function of x (since it is the difference of two
functions of x). Note that if lim

n→∞
Tn(x) = g(x), then

lim
n→∞

Tn(x)− g(x) = 0 = lim
n→∞

Rn(x).

Showing this may be difficult. However, we have a good way to estimate just hoe big the remainder can be.

Theorem 1. If
∣∣∣f (n+1)(x)

∣∣∣ ≤ M for |x− a| < d, then the remainder Rn(x) of the nth Taylor polynomial

satisfies the inequality

|Rn(x)| ≤
M

(n+ 1)!
|x− a|n+1

, for |x− a| < d.

Some notes:

• In this theorem, they use d to denote the radius of convergence of the series. This is to avoid the
confusion of using R for both the radius of convergence and the remainder.

• Really, the right-hand-side of the inequality in the theorem is just a cap on the size on the NEXT
term in the series after the nth Taylor polynomial. To compare directly, notice

f (n+1)(a)

(n+ 1)!
(x− a)n+1︸ ︷︷ ︸

(n+1)st term in Taylor series

M

(n+ 1)!
|x− a|n+1︸ ︷︷ ︸

bound for Rn(x)

.

You can see directly where the bound
∣∣f (n+1)(x)

∣∣ ≤ M comes in, as well as the switch from the

parentheses in (x− a)n+1 to the absolute values |x− a|n+1
.

Notice that there are many good examples of Taylor series in this section. It will pay well to spend some
time with these, and not just skim over them. Here is one of them.

Example 2. Let k ∈ N be a natural number. Expand f(x) = (1 + x)k as a Maclauren series. As before, we
start by finding either a pattern for the derivatives of f(x) at x = 0, or at least calculating them. Note first
here, though, that for any k, f(x) IS a polynomial. So f(x) has derivatives of all orders, even though after
k, they will all be 0. Here

f(0) = (1 + x)k
∣∣∣
x=0

= 1

f ′(0) = k(1 + x)k−1
∣∣∣
x=0

= k

f ′′(0) = k(k − 1)(1 + x)k−2
∣∣∣
x=0

= k(k − 1)

f (3)(0) = k(k − 1)(k − 2)(1 + x)k−3
∣∣∣
x=0

= k(k − 1)(k − 2)

...
...

f (n)(0) = k(k − 1)(k − 2) · · · (k − n+ 1)(1 + x)k−n = k(k − 1)(k − 2) · · · (k − n+ 1) =
k!

(k − n)!
,

and thus all derivatives are 0 after the nth (can you see this?). Thus

f(x) =
∞∑

n=0

f (n)(0)

n!
xn =

∞∑
n=0

(
k!

(k − n)!

)
1

n!
xn =

k∑
n=0

(
k!

(k − n)!n!

)
xn =

k∑
n=0

(
k

n

)
xn,
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where the notation
(
k
n

)
is the standard notation for the counting principle of how many ways one can choose

n objects out of a set of k objects where the order of the choosing does not matter. Thus the coefficients of
the polynomial f(x) = (1 + x)k are the entries in the kth row of Pascal’s Triangle

k = 0: 1

k = 1: 1 1

k = 2: 1 2 1

k = 3: 1 3 3 1

k = 4: 1 4 6 4 1

k = 5: 1 5 10 10 5 1

and so

f(x) = (1 + x)5 = 1 + 5x+ 10x2 + 10x3 + 5x4 + x5.

Lecture 2: Section 10.10 Taylor and Maclauren series (cont’d.)

One thing about the binomial series mentioned above is that, for k ∈ R but k ̸∈ N, then the function
f(x) = (1 + x)k is not a polynomial. But it still has derivatives that behave roughly the same as when k is
a natural number. It is just that in general, the derivatives will not wind up being 0 after a while. Thus the
Maclauren series of this f(x) should still exist, but will not be a finite series. And the coefficients should
wind up looking a lot like those above for k a natural number. All of this is true, and can be written down
explicitly through the idea of generalized binomial coefficients: For k, n ∈ N, we know(

k

n

)
=

k!

(k − n)!n!
=

(
k!

(k − n)!

)
1

n!
=

(
k!

(k−n)!

)
n!

,

where the numerator is the thing to focus on here. Indeed,

k!

(k − n)!
=

k(k − 1)(k − 2) · · · (k − n+ 1)(k − n)(k − n− 1) · · · 1
(k − n)(k − n− 1) · · · 1

=
k(k − 1)(k − 2) · · · (k − n+ 1) · (k − n)!

(k − n)!
=

n terms︷ ︸︸ ︷
k(k − 1)(k − 2) · · · (k − n+ 1) =

n−1∏
i=0

(k − i).

The n-terms on the right are simply the product of k and each of its n predecessors (a predecessor here is
defined as the number formed by decrementing k by 1). But this will also work if k ̸∈ N is any real number,
as in

(
π

2

)
=

(
2−1=1∏
i=0

(π − i)

)
2!

=
π(π − 1)

2
or

(
π

5

)
=

(
4∏

i=0

(π − i)

)
5!

=
π(π − 1)(π − 2)(π − 3)(π − 4)

5!
.

The only difference between this new case and the regular version of binomial coefficients you are familiar
with (as polynomial coefficients), is that now, the bottom number n may be larger than the top number k.
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But this was true even in the regular case, as

(
5

2

)
=

5!

(5− 2)!2!
=

(
2−1=1∏
i=0

(5− i)

)
2!

=
5(5− 1)

2
= 10, while

(
5

7

)
=

(
7−1=6∏
i=0

(5− i)

)
7!

=
5(5− 1)(5− 2)(5− 3)(5− 4)(5− 5)(5− 6)

7!
= 0.

But when k is not a natural number, the generalized binomial coefficients do not become 0 after a while (in
general).

Some Notes:

• If k ̸∈ N, then (1 + x)k can still be written as a power series as

(1 + x)k =

∞∑
n=0

(
k

n

)
xn,

except that now the series is NOT finite (the resulting function is NOT a polynomial).
• It is a bit tricky to show (it is in the book, however), but the radius of convergence for this power
series in R = 1.

Example 3. Find the Maclauren series for i(x) =
1√
1 + x

. Here we could simply start calculating the

derivatives of i(x), setting them to 0, hopefully find a pattern and then write the series using the pattern.
However, we can also recognize that this function can be written as an (infinite) binomial series,

i(x) = (1 + x)−
1
2 =

∞∑
n=0

(
− 1

2

n

)
xn,

where k = − 1
2 . This series looks like

∞∑
n=0

(
−1

2

n

)
xn =

(
−1

2

0

)
x0 +

(
−1

2

1

)
x1 +

(
− 1

2

2

)
x2 +

(
− 1

2

3

)
x3 +

(
− 1

2

4

)
x4 + . . .

= 1 +

(
− 1

2

)
1!

x1 +

(
−1

2

) (
− 3

2

)
2!

x2 +

(
−1

2

) (
− 3

2

) (
− 5

2

)
3!

x3 +

(
−1

2

) (
− 3

2

) (
−5

2

) (
−7

2

)
4!

x4 + . . .

= 1− 1

2
x+

3

8
x2 − 15

48
x3 +

105

384
x4 + . . . .

Example 4. Use the fourth Taylor polynomial T4(x) of i(x) =
1√
1 + x

to estimate
√
2. Here, we note two

things: First, we have

i

(
−1

2

)
=

1√
1 +

(
−1

2

) =
1√
1
2

=
1
1√
2

=
√
2,

and second, since the radius of convergence for the binomial series is R = 1, and −1
2 ∈ (−1, 1), the function

equals the power series at this value, and we can use the series to estimate the function value. From above,

i(x) ∼= T4(x) =
4∑

n=0

(
− 1

2

n

)
xn = 1− 1

2
x+

3

8
x2 − 15

48
x3 +

105

384
x4,
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and evaluated at x = − 1
2 , we get

T4

(
−1

2

)
= 1− 1

2

(
−1

2

)
+

3

8

(
−1

2

)2

− 15

48

(
−1

2

)3

+
105

384

(
−1

2

)4

∼= 1.38.

Incidentally, a better approximation of the square root of 2 is
√
2 ∼= 1.4142136.

Taylor series can be quite useful for things like integration. Some functions are quite difficult, or impossible

to find antiderivatives for (at least in a nice form). One such function is e−x2

, an expression intimately related
to the standard normal curve in statistics. How so? The Gaussian Distribution is a continuous probability
distribution given by the function

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 ,

where µ is the mean of the distribution, and σ is the standard deviation. Take a distribution with µ = 0
and σ = 1

2 , and you get

f(x) =
1√
π
e−x2

.

Finding the area under f(x) amounts to finding the probability that the value of a normal random variable
takes the value of x or less, or

P (X ≤ x) =

∫ x

−∞
f(x) dx.

Hence being able to anti-differentiate e−x2

would be very helpful. However, there is no nice expression for a
function whose derivative is f(x).

Example 5. Calculate

∫ 1

0

e−x2

dx via a power series approximation to within .001. First, we seek to write

the integrand as a power series. Here

e−x2

= e(−x2) =
∞∑

n=0

(−x2)n

n!
=

∞∑
n=0

(−1)n
x2n

n!
.

One can use the Ratio Test here to ensure that this power series equals the function for all values of x (that

is, the radius of convergence isR = ∞. You should do this on your own). As a power series, e−x2

is easy to

integrate, and the antiderivative of e−x2

is∫
e−x2

dx =

∫ ( ∞∑
n=0

(−1)n
x2n

n!

)
dx = C +

∞∑
n=0

(−1)n
x2n+1

n!(2n+ 1)
.

This new series will again converge for any choice of x (why is this the case?). Hence, this series equals the

antiderivative of e−x2

on the interval [0, 1]. And so∫ 1

0

e−x2

dx =

( ∞∑
n=0

(−1)n
x2n+1

n!(2n+ 1)

)∣∣∣1
0
=

∞∑
n=0

(−1)n
12n+1

n!(2n+ 1)
−

∞∑
n=0

(−1)n
02n+1

n!(2n+ 1)

=
∞∑

n=0

(−1)n

n!(2n+ 1)
= 1− 1

3
+

1

10
− 1

42
+

1

216
− 1

1320
+ . . . .
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Now this last series is an alternating series. Recall that for an alternating series
∞∑

n=0

(−1)nbn which

converges, the nth partial sum sn, is within bn+1 of the true sum (whatever that is). Hence we have
|sn − s| < bn+1. In our case, notice that

b5 =
1

1320
<

1

1000
= .001,

and hence we know that the partial sum

s4 = 1− 1

3
+

1

10
− 1

42
+

1

216
∼= .74749

is within .001 of the true sum. Incidentally, a computer generated better approximation for the true sum is
something like .7468.

The Taylor series of a product of functions can be calculated in the normal direct way (by taking deriva-
tives, evaluating them at a point, and then looking for a pattern), or by simply writing the power series for
each of the product functions and then multiplying the two power series (term by term, that is). Recall
when multiplying two polynomials, each term in one polynomial must be multiplied to each term in the
other . While this may be tedious and time consuming, remember that the early terms in a power series are
the most important, and there are very few calculations needed to determine these early terms. To see this,
note the following example:

Example 6. Determine the Maclauren series for ex sinx. Taking multiple derivatives of this function may
involve many terms to juggle. Instead, let’s simply multiply the power series of each factor function together:
We get

ex sinx =

( ∞∑
n=0

xn

n!

)( ∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

)

=

(
1 + x+

x2

2!
+

x3

3!
+

x4

4!
+ . . .

)(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
. . .

)
= 1

(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
. . .

)
+ x

(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
. . .

)
+

x2

2!

(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
. . .

)
+

x3

3!

(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
. . .

)
+ . . .

= x+ x2 +

(
− 1

3!
+

1

2!

)
x3 +

(
− 1

3!
+

1

3!

)
x4 +

(
− 1

5!
+

1

2!3!
+

1

4!

)
x5 + . . .

= x+ x2 +
1

3
x3 − 1

30
x5 + . . . .

This also works for function that can be written as the quotient of two other functions.

Example 7. Find the Maclauren series of tanx. Again, the direct way would be to calculate the derivatives
of tanx and set them all to 0. But This starts to get complicated as one winds up using the product rule a
lot after the first couple of derivatives. Not that this is any easier, but you can also do the following:

tanx =
sinx

cosx
=

( ∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

)
( ∞∑

n=0

(−1)n
x2n

(2n)!

) .
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To write out the series, one would have to use long division and calculate

(
1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
. . .

)√(
x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
. . .

)
.

While this seems difficult, it is doable.

Next class, we will run through an example of calculating the power series of a product of functions using
the direct method as well as the product method.

Lecture 3: Section 10.10-11 Taylor and Maclauren series (cont’d.)

Let’s continue with more examples of the utility and versatility of the use of the Taylor and Maclauren
series for functions. First, Taylor polynomials, as approximations to difficult-to-evaluate functions, are useful
for approximations.

Example 8. Estimate the decimal value of ln
(
1
2

)
to within .02 of its true value. Really, this contrived

problem addresses the idea that if a Taylor polynomial is a good approximation of a function, then its value
at a point is a good approximation of the functions value at the point.

To solve this, let g(x) = ln(1 + x). Then its value at x = − 1
2 is g

(
− 1

2

)
= ln

(
1
2

)
. So if we can write g(x)

as a power series (its Maclauren series), AND if x = − 1
2 is within the interval of convergence, then we can

use the partial sums of the power series (these will be the Maclauren polynomials (Taylor polynomials at 0))
to approximate the number we seek.

Notice here that we chose g(x) = ln(1 + x) so that we can work with its Maclauren series. The function
h(x) = lnx does not have a Maclauren series, as it is not defined at 0. Choosing g(x) to look like a shifted
h(x) makes this job a bit easier.

Let’s calculate the Maclauren series of g(x) is two ways:

(1) Direct Method: Start calculating derivatives. Here

g(0) = ln 1 = 0

g′(0) =
1

(1 + x)

∣∣∣
x=0

= 1

g′′(0) =
−1

(1 + x)2

∣∣∣
x=0

= −1

g(3)(0) =
2

(1 + x)3

∣∣∣
x=0

= 2

...
...

g(n)(0) = (−1)n(n− 1)! for n > 0.
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Note that this nice description of the general nth derivative of g(x) doesn’t quite work for the 0th
derivative. We can leave that one out and keep it separate. Hence we can write,

g(x) =

∞∑
n=0

g(n)(0)

n!
xn

= 0 +
∞∑

n=1

(−1)n−1(n− 1)!

n!
xn

= 0 +
∞∑

n=1

(−1)n−1x
n

n
= x− x2

2
+

x3

3
− x4

4
+ . . . .

(2) Via Integration: We also know that the first derivative of g(x) is

g′(x) =
1

1 + x
=

1

1− (−x)
,

which is geometric and has a Maclauren series

g′(x) =
∞∑

n=0

(−x)n =
∞∑

n=0

(−1)nxn.

This also tells us immediately what the radius of convergence of g′(x) is, R = 1. Hence we can
integrate directly to get a power series representation for g(x), and

g(x) =

∫ ( ∞∑
n=0

(−1)nxn

)
dx = C +

∞∑
n=0

(−1)n
xn+1

n+ 1
= C +

∞∑
n=1

(−1)n−1x
n

n
,

where we have reset the index of the summation to start at 1 in the last series so that it looks exactly
the same as before. And since g(0) = 0, it turns out that C = 0 also, and

g(x) =
∞∑

n=1

(−1)n−1x
n

n
= x− x2

2
+

x3

3
− x4

4
+ . . . .

And finally, we can use a Taylor polynomial to estimate g
(
− 1

2

)
. Let’s try to use T2(x) as an approximation:

Here

T2

(
−1

2

)
=

(
x− x2

2

) ∣∣∣∣∣
x=− 1

2

= −1

2
−
(
− 1

2

)2
2

= −5

8
= −.625.

This is a nice estimate, but it may not be accurate enough. In fact, the Series is alternating, and so the nth
partial sum sn, is only as accurate as the (absolute value of the) next term in the series. This next term is∣∣∣x3

3

∣∣∣∣∣∣∣∣
x=− 1

2

= 1
24

∼= .04167. This is not close enough.

Hence we use T3(x) in our calculation: Here

T3

(
−1

2

)
=

(
x− x2

2
+

x3

3

) ∣∣∣∣∣
x=− 1

2

= −1

2
−
(
− 1

2

)2
2

+

(
−1

2

)3
3

= −2

3
= −.66667.

This estimate (which is the partial sum s3, satisfies

|s3 − s| < b4 =

∣∣∣∣x4

4

∣∣∣∣
∣∣∣∣∣
x=− 1

2

=

(
− 1

2

)4
4

=
1

64
= .015625.



9

Thus the third Taylor polynomial provides a close enough estimate of ln
(
1
2

) ∼= −.66667. Actually, a much
better estimate places this value at around −.69315.

Example 9. Find the 4th Maclauren polynomial M4(x) for f(x) = ex ln(x+ 1). Again, we can do this in
two ways:

(1) Direct Method: Start calculating derivatives (but only up to the 4th is needed here). Here

f(0) = e0 ln 1 = 0

f ′(0) =

(
ex ln(1 + x) +

ex

(1 + x)

) ∣∣∣∣∣
x=0

= 1

f (2)(0) =

(
ex ln(1 + x) +

ex

(1 + x)
+

ex

(1 + x)
−

ex

(1 + x)2

) ∣∣∣∣∣
x=0

=

(
ex ln(1 + x) +

2ex

(1 + x)
−

ex

(1 + x)2

) ∣∣∣∣∣
x=0

= 1

f (3)(0) =

(
ex ln(1 + x) +

ex

(1 + x)
+

2ex

(1 + x)
−

2ex

(1 + x)2
−

ex

(1 + x)2
+

2ex

(1 + x)3

) ∣∣∣∣∣
x=0

=

(
ex ln(1 + x) +

3ex

(1 + x)
−

3ex

(1 + x)2
+

2ex

(1 + x)3

) ∣∣∣∣∣
x=0

= 2

f (4)(0) =

(
ex ln(1 + x) +

ex

(1 + x)
+

3ex

(1 + x)
−

3ex

(1 + x)2
−

3ex

(1 + x)2
+

6ex

(1 + x)3
+

2ex

(1 + x)3
−

6ex

(1 + x)4

) ∣∣∣∣∣
x=0

=

(
ex ln(1 + x) +

4ex

(1 + x)
−

6ex

(1 + x)2
+

8ex

(1 + x)3
−

6ex

(1 + x)4

) ∣∣∣∣∣
x=0

= 0.

Hence the 4th Maclauren polynomial for f(x) is

M4(x) =
4∑

n=0

f (n)(0)

n!
xn =

1

1!
x+

1

2!
x2 +

2

3!
x3 +

0

4!
x4 = x+

x2

2
+

x3

3
.

(2) Via a product of series: We also know the Maclauren series for each of the factor functions in
f(x), and can write

f(x) = ex ln(1 + x) =

( ∞∑
n=0

xn

n!

)( ∞∑
n=1

(−1)n
xn

n

)

=

(
1 + x+

x2

2!
+

x3

3!
+

x4

4!
+ . . .

)(
x− x2

2
+

x3

3
− x4

4
+ . . .

)
= 1

(
x− x2

2
+

x3

3
− x4

4
+ . . .

)
+ x

(
x− x2

2
+

x3

3
− x4

4
+ . . .

)
+

x2

2!

(
x− x2

2
+

x3

3
− x4

4
+ . . .

)
+

x3

3!

(
x− x2

2
+

x3

3
− x4

4
+ . . .

)
+

x4

4!

(
x− x2

2
+

x3

3
− x4

4
+ . . .

)
+ . . .

This looks quite impossible to untangle, but really, it is quite straightforward to proceed. The
product of two polynomials is found by taking every term in one polynomial and multiplying it to
every term in the other. The resulting series is found by collecting like terms of the same degree.
But the lowest degree terms are very few in number, and easy to combine. So for M4(x), we need
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collect ONLY terms of degree up to 4. Here, we get no terms of degree 0, 1 term of degree 1, 2 terms
of degree 2 (can you see both of them?), 3 terms of degree 3, and so on. We get

M4(x) = x+

(
−1

2
+ 1

)
x2 +

(
1

3
− 1

2
+

1

2

)
x3 +

(
−1

4
+

1

3
− 1

4
+

1

6

)
x4

= x+
x2

2
+

x3

3
.

Note that the coefficient of the degree-4 term is 0, just like before.

Example 10. Let f(x) =
√
x. How far off can the second Taylor polynomial of f(x) be if T2(x) is centered

at a = 4 and we limit ourselves to the interval 3.5 ≤ x ≤ 4.5? How about on the interval 3 ≤ x ≤ 5?

To do this problem, it is not entirely necessary to compute the entire Taylor series of f(x) at a = 4, but
we will anyway. So first, we again calculate the derivatives of f(x), evaluated at x = 4, and look for the
pattern (there will be one, since all of the derivatives here are just power functions). Here

f(4) =
√
4 = 2

f ′(4) =
1

2
√
x

∣∣∣∣∣
x=2

=

(
1

2

)
x− 1

2

∣∣∣∣∣
x=2

=

(
1

2

)
1

4
1
2

=

(
1

2

)
1

21
=

1

4

f (2)(4) =

(
1

2

)(
−
1

2

)
x− 3

2

∣∣∣∣∣
x=2

=

(
1

2

)(
−
1

2

)
1(

4
1
2

)3
=

(
1

2

)(
−
1

2

)
1

23
= −

1

32

f (3)(4) =

(
1

2

)(
−
1

2

)(
−
3

2

)
x− 5

2

∣∣∣∣∣
x=2

=

(
1

2

)(
−
1

2

)(
−
3

2

)
1(

4
1
2

)5
=

(
1

2

)(
−
1

2

)(
−
3

2

)
1

25
=

3

256

..

.
..
.

f (n)(4) =

n−1∏
i=0

(
1

2
− i

)
1

22n−1
, for n ≥ 0.

Hence the Taylor series of f(x) at a = 4 is

f(x) =

∞∑
n=0

f (n)(4)

n!
(x− 4)n =

∞∑
n=0

(
n−1∏
i=0

(
1

2
− i

)
1

22n−1

)
n!

(x− 4)n =

∞∑
n=0

( 1
2

n

)
(x− 4)n

22n−1
.

Next time, we will continue and use this series to form the second Taylor polynomial and estimate its
remainder.


