Math 110.421, Dynamical Systems

Spring 2010 Course Syllabus

http://www.mathematics.jhu.edu/brown/courses/s10/Spring10421.htm
	Dr. Richard Brown
	TTh 1:30pm - 2:45pm

	Brown “at” math.jhu.edu
	Room: Krieger 308

	403 Krieger Hall
	

	410-516-8179
	

	Office Hours:


	T
	3:00-4:00 pm
	by appt. other times

	
	Th
	3:00-4:00 pm
	


	Below is some basic information relevant to this course.  A more detailed schedule of course material, homework assignments, and testing dates will follow shortly. 


Text:  B. Hasselblat and A. Katok, A First Course in Dynamics, 1st edition, Cambridge University Press (2003), ISBN 0 521 58750 6 (paperback).

Course Material: 
The core of the course will center on the text material, and will cover most of the book.

Grade Policy:
There will be homework sets and a (possibly take home) exam or two.  The schedule of homework and the exams will be given below in time.  

Homework: 
Homework based on the current week’s lectures will be posted here on the course web site sometime on Thursday after lecture. These assignments will be due the following Thursday. You are strongly encouraged to do your homework in groups. You are required, however, to write up your homework on your own. Homework is essential educational part of this course. You will be graded mostly on your ability to work through problems completely and concisely.  This effort will be evaluated on the exam, which cannot be done in any collaborative way. 
Course Policy: You are responsible for lecture notes, any course material handed out, and attendance in class.  While I will not formally record your attendance, I will easily get to know you and your rate of presence over time.  Since I will be following the book, the lectures will be conducted as if you have already read the material and attempted some homework problems.  In this manner, you can focus mainly on those parts of the lectures that cover the areas of your reading you found difficult to understand. My teaching style is that of interactive discussion and I will rely on your input in developing the material.  Active participation in the classroom is a great way to generate the discussion necessary to fully grasp the material. 
Help Room: 
213 Kreiger Hall.  The hours are 9am – 9pm on Monday through Thursday, and 9am – 5pm on Friday.  This free service is a very valuable way to get one-on-one help on the current material of a class from other students outside the course.  It is staffed by graduate students and advanced undergraduates.

Ethics Statement:  
The strength of the university depends on academic and personal integrity. In this course, you must be honest and truthful.  Cheating is wrong. Cheating hurts our community by undermining academic integrity, creating mistrust, and fostering unfair competition. The university will punish cheaters with failure on an assignment, failure in a course, permanent transcript notation, suspension, and/or expulsion. Offenses may be reported to medical, law, or other professional or graduate schools when a cheater applies. 

Violations can include cheating on exams, plagiarism, reuse of assignments without permission, improper use of the Internet and electronic devices unauthorized collaboration, alteration of graded assignments, forgery and falsification, lying, facilitating academic dishonesty, and unfair competition. Ignorance of these rules is not an excuse. 

In this course, as in many math courses, working in groups to study particular problems and discuss theory is strongly encouraged.  Your ability to talk mathematics is of particular importance to your general understanding of mathematics.

You should collaborate with other students in this course on the general construction of homework assignment problems.  However, you must write up the solutions to these homework problems individually and separately.  If there is any question as to what this statement means, please see the professor or the grader.

For more information, see the guide on "Academic Ethics for Undergraduates" and the Ethics Board web site (http://ethics.jhu.edu). 

Students with Disabilities:  
Students with documented disabilities or other special needs that require accommodation must register with the Office of Academic Advising. After that, remind me of your needs at least 5 days prior to each exam; we will need to have received confirmation from Academic Advising. 

Math 110.421, Dynamical Systems

Spring 2010 Tentative Schedule

The details of this material may be updated and reformed as the semester progresses.

	Week
	Sections
	Homework
	Due 
	Selected Solutions 

	January 26 –28
	Course Orientation

Chapter 1

2.1 Linear Maps and Linearization

2.2 Contractions in Euclidean Space
	1.1.1,1.1.8,1.1.10

1.3.15,1.3.18

2.1.1

EP1,EP2,EP3,EP4
	February 4
	

	February 2 – 4

Lexture 1 Notes
Lecture 2 Notes
	2.2 Contractions in Euclidean Space

Contraction Map Example
2.3 Interval Maps 


	2.2.4,2.2.5*a,2.2.6

2.3.2

EP5,EP6, EP7
	February 18
	

	February 9 – 11
	Snowmageddon I and II
	
	
	

	February 16 – 18 
	2.3 Interval Maps

2.4.3 Limit Cycles

2.5 Quadratic maps (pp 57-8)

2.6.1 Metric Spaces 
	2.4.6, EP8

2.5.3,2.5.4,EP9,EP10,EP11

EP12
	February 25
	

	February 23 – 25
	2.6.2-5 Metric Spaces

2.7 Fractals

3.1.1-7 Linear Maps 
	EQ13,EP14

2.7.3

3.1.2,3.1.3,3.1.5,EP15,EP16
	March 4
	

	March 2 – 4
	3.1.8-3.1.9 Linear Maps

4.1.1-3 Circle Rotations
	3.2.5,EP17

4.1.1*b, 4.1.2*c, EP18, EP19
	March 11
	

	March 9 – 11
	4.1.1-4 Circle Rotations

4.2.1 Distribution of Values

4.2.3 Linear Toral Flows
	4.1.5,4.2.10,EP20

4.2.5,EP21,EP22
	March 25
	

	March 16 – 18
	Spring Break
	
	
	

	March 23 – 25 
	4.2.4 Linear ODEs and Lissajous

4.2.5 Interval Flows and Billiards

4.3.1 Invertible Circle Maps
	
	April 1
	

	March 30 –April 1
	4.3.1-2 Invertible Circle Maps

Chapter 5 comments on n-tori

6.1.1 Volume Preservation
	4.3.1,4.3.2,4.3.3,4.3.9,EP23,EP24

6.1.1,6.1.2,6.1.5,6.1.6,6.1.7,EP25
	April 8
	

	April 6 – 8
	6.1.2 Poincare Recurrence

6.2.1-2 Newton’s Equation

6.2.2 The Mathematical Pendulum

6.2.4 Constants of Motion

6.2.4,6-7 

6.3.1-2 Billiards
	6.2.1,6.2.3

6.2.8

EP26

6.2.4

6.3.3,6.3.4,EP27,EP28
	April 15
	

	April 13 – 15
	6.3.3-5 Billiard Examples

6.4.1-3,5  Convex Billiards

7.1.1-3 Growth of Periodic Orbits
	6.3.5,EP29

6.4.1

7.1.1,7.1.4,7.1.6,7.1.9,EP30,EP31
	April 22
	

	April 20 – 22 
	7.1.4 Hyperbolic Toral Maps

7.1.5 Inverse Limits

7.2.1 Topological Transitivity
	EP32,EP33

EP34,EP35
	April 29
	

	April 27 – 29
	7.2.2-5 Topological Mixing and Chaos

8.1 Compact space dimension

8.2.1-2 Topological Entropy
	EP36,EP37,EP38,7.2.1,7.2.3,7.2.4

8.1.2

EP39
	May 6
	

	May 4 – 6
	8.2.2-4 Topological Entropy

Extra:  Route to Chaos and my example
	
	
	

	
	
	
	

	May 14
	Final Problem Set
	Due: by noon Krieger 403
	


Problem Notes: 
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 which defines the dynamical system.  Interestingly, the fixed point of this map will be the asymptotic growth rate for the rabbit population.

*b. You may want to review Proposition 2.6.7 on page 63, showing that the metric defined on the circle is actually a metric.

*c. This is actually easier than you may think.  With c=7.1, you know what 
[image: image3.wmf]a

is.   Just get it close to an integer.

Extra Problems:

EP1: Approximate [image: image4.emf]110




110

 using Heron’s method for calculating square roots, to an accuracy of .001.  Try this using starting points of 10 and 11 for your rectangle sides, and 1 and 110, noting the convergence properties.

EP2: Do the following for the ODE
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a) Solve the ODE by separating variables.  Justify why the absolute value sign is not necessary when stating a single expression for the general solution.

b)  Calculate the equivalent discrete dynamical system (on the real line) which takes each point of the real line to its position along the solution curve of the ODE one time unit later.  (Hint:  As in class, the function which defines the discrete dynamical system will be linear, but this case will include a specific, non-zero constant term).

c) Discuss the simple dynamics of the discrete dynamical system.
  

EP3: Show 
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 without using any derivative material (that is, Propositions 2.2.3 or 2.2.5).

EP4: Show, without using the Contraction Principle, that a contraction cannot have 2 or more fixed points.

EP5: Find all periodic points (to an accuracy of 
[image: image9.wmf]1000
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) of the discrete dynamical system given by the map 
[image: image10.wmf](

)

5

1

log

)

(

+

-

=

x

x

f

 on 
[image: image11.wmf][

)

¥

,

2

.

EP6: Show that an invertible map on [image: image12.emf][
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, must satisfy all of the following (Hint:  All of these can be shown by assuming the property does not hold and then finding a contradiction).  

i. Be injective (one-to-one),

ii. Be surjective (onto;  the range must be all of I),

iii. And either 
[image: image14.wmf]a
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EP7: Figure 2.2.4 provides a visual example of an invertible map on the unit circle (called 
[image: image18.wmf]1
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) that contains homoclinic points.  Construct an example (similar to the one in the figure or different) with an explicit expression for
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.  Note:  Any continuous map of the unit interval with both endpoints fixed can be viewed as a map on 
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.  But can you construct one that doesn’t fix the endpoints?  Can you construct one that is also differentiable on all of 
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EP8: Solve the first order, autonomous, non-linear ODE system given in cylindrical coordinates below and show that there exists an asymptotically stable limit cycle (Hint:  Since the system is completely uncoupled, you can solve each ODE separately).  What are the eigenvalues of the 
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EP9: Show that the logistic map
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EP10: Show that for
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EP11: Find the change in variables which takes 
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EP12: Show that the annulus A below (in gray with its boundary circles) is homeomorphic to the cylinder C of height
[image: image32.wmf]0
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 and radius 
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 centered on the z-axis and resting on the 
[image: image34.wmf]0

=

z

 plane.  Of course, C has no top or bottom, but the sides do have the circle edges at the top and bottom.  Do this by constructing the map 
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.  Hint:  A good way to do this is to construct f from (part of) the plane into three-space using polar coordinates in the plane and cylindrical coordinates in three space.  Construct g in a similar manner.  When restricted to A and C, the maps should be continuous bijections.  Verify this. 
[image: image37.png]>0
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EP13: Show that you cannot have a continuous surjective contraction on 
[image: image38.wmf]1
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.  However, construct a continuous, non-trivial contraction on the circle. Hint:  A continuous map cannot break the circle in its image (it would not be continuous at the break), but it can fold the circle.

EP14: Show that the function 
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 from the plane to itself can be made into a function on the standard infinite cylinder 
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EP15: For the map 
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EP16: In EP15 above, let f be defined with 
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system of linear, homogeneous, first-order ODEs whose time-1 map is f. 
EP17:  Do the following:

a) For the hyperbolic map [image: image49.emf]2
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, find a nontrivial initial vector [image: image52.emf]v
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b) Draw a phase portrait of [image: image55.emf]f
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c) Recast the Lemmings Problem as a first order vector recursion in the plane.  Find the starting vector.

d) Use Proposition 3.1.13 to find the functional form for the yearly population of lemmings.  Use this to determine the total population of lemmings this spring, if the first two lemmings were one year old in 1980. 

EP18: Show the following:

a) For any rational rotation of the circle, all orbits are periodic of the same period.

b) For any irrational orbit, no orbits are periodic.

EP19: In class, the circle rotation 
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was the closest return map to 0 than the previous iterates, and it was stated that it was smaller than 
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EP20: Show that a linear map on the real line of the form 
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in the unit square by considering the function as a map on the unit interval with the endpoints identified.  Note:  Two points in the real line correspond to the same point on the circle if their difference is an integer.   

EP21: In general, let [image: image68.emf]2
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a) Show h induces a map on the standard 2-torus [image: image72.emf]1
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.  Hint:  Two vectors in the plane are in the same equivalence class on the torus (correspond to the same point on the tours), if they differ by a vector with integer entries.

b) What can you say about the orbits of points on [image: image73.emf]1
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EP22: In the proof of Proposition 4.2.8 on page 113 of the text, it is claimed that the first return map on the waist curve under the constant flow induced by 
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EP23: Find the rotation number for the following invertible circle map:
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EP24: Show that for a circle map 
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EP25: Do the following:

a) Show that the constant flow on the standard 2-torus is an isometry (Hint: Build the proper metric on the torus.)

b) Show that the map
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on the unit cylinder 
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 preserves volume (though it is not an isometry). 

EP26: For the normalized undamped pendulum 
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, carefully draw either the phase plane or the phase cylinder.  Re-derive the potential energy and the total energy of the system and show the total energy is a constant of the motion.  Label on your drawing the energy levels of the equilibria and describe what is happening on the orbits that comprise the energy level that includes the saddle.  Do the closed orbits in phase space all have the same period? 

EP27: For the circular billiard within the unit circle, derive the expression for the caustic as a function of the incidence angle for the light ray.

EP28: Derive an expression for the twist map on the state space cylinder, which is the billiard map for the circular table of radius
[image: image87.wmf]0
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EP29: Prove that the generating function of the circular billiard table is 
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EP30: For the linear expanding map of the circle given by
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EP31: Show that Proposition 7.1.3 holds for 
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EP32: For the hyperbolic linear map on the torus given by the matrix 
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, draw the torus with its two canonical loops that correspond the edges of the unit square in R2 , viewed as a fundamental domain.  Then carefully draw the images of these two curves under the toral map.  You may want to draw the images of the edges of the fundamental domain in R2 first.

EP33: Again for the hyperbolic linear toral map given by the matrix 
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(See the proof of Proposition 7.1.10).  These were the integer vectors lying inside the parallelogram [image: image96.emf](
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, where L is the linear map of R2 given by the same matrix.  Do the following:  
a) Use the construction of 
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b) Draw the parallelogram for 
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c) Use 
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to identify the points in the original fundamental domain that correspond to integer vectors in the parallelogram (These are the actual toral points fixed by the third iterate).  
EP34: The book uses the fact that expanding maps of 
[image: image102.wmf]1

S

are topologically mixing to show that they are chaotic.  Without using topological mixing, show that expanding maps of 
[image: image103.wmf]1
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are chaotic.

EP35: Do the same as in EP34 to show that the hyperbolic linear map of the torus given by the matrix
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 is chaotic.  

EP36: Show the cylindrical twist map from EP25b has a sensitive dependence on initial conditions but is not chaotic.

EP37: For  
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, show that any lift 
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also satisfies 
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EP38: Show that an isometry cannot display a sensitive dependence on initial conditions.

EP39: Show that for a map f on the metric space X , the nth orbit segment metric 
[image: image111.wmf]f
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defined in class is actually a metric.  Recall that for d a metric on X, we have 
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