MATH 421 DYNAMICS

Week 8 Lecture 2 Notes

1. NEWTONIAN SYSTEMS OF CLASSICAL MECHANICS (CONT’D.)

Last class we began a discussion on a particular type of mathematical models; those given by a second-
order differential equation. We will see that they exhibit the phase space incompressibility we mentioned.
Their structure actually exposes a lot about the dynamical behavior of systems of this type. First, some
easy examples:

Example 1. An object under the influence of gravity:
t2

iI=—g,= s(t)= 95 + vt + so,

where vy and sg are the initial velocity and initial position, respectively.

Example 2. Harmonic Oscillator. Recall Hooke’s Law: the amount an object is deformed is linearly related
to the force causing the deformation. This translates to

& = —kx,=—> x(t) = asin Vkt + bcos \/Et,

where a and b are related to the initial starting position and velocity of the mass.

As stated above, note that any equation ODE of the form & = f(¢,z, &) can be converted to a system of
two first order (generally coupled) ODEs of the form

T = v
= f(t7 x? U)
which defines a vector field (static one if ¢ does not appear explicitly in the equations) on the (x,v)-state

space. For Newton’s Equation, the equivalent system is & = v and v = % f(x).

Note: For the n-system governed by Newton’s Law f = ma, we get the 2n-system of first order equations
defined as

r = v
é = f(tajaﬁ)
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The state space consists of the 2n-dimensional vectors [ } The vector field of this 2n-system attaches

v
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the vector V = [ } to each point [
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} . The divergence of this vector field is

V'Vzgjm(””iai (;fi(x)) —o.

i=1

Hence the flow preserves volume.

This fact is now true for general Newtonian systems. One facilitating idea in Newtonian physics is

to, in essence, factor out the mass. Define a new variable p := mv as the (linear) momentum. Then
f =ma = f =mv=p, and the system becomes & = £ a,d p = f(z). Not only does this make the system

easier to work with, it exposes some hidden symmetries within the equations of conservative systems.
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Now assume that the force f(z) is a gradient field (this means that the force is the gradient of a function
of position alone, or f = —VV for some V(z). Then

f(z) =ma=mv=-VV.

We could also say that
. D
i =
m

p = =VV(x).
Here, the function V is called the potential energy (energy of position), and the energy of motion, the kinetic
energy is

1 1
K =cm o] = 5m(vD).

The total energy H = K + V satisfies

d dK dV oV Ox;
—_ - _ = ) . . — ) . . —_ } = ().
dt(H) e U+;n8xi 5 = vt VV.-v=(VV +mi,v) =0

The conclusion is the total energy H is conserved as one evolves in a system like this. As H is a function
defined on the state space given by the vectors = and mu, the solutions to the system of ODEs are confined
to the level sets of this function. A system like this is called conservative, and is characterized by the idea
that the force field is a gradient field. You have seen this before in a different guise:

Example 3. Consider the nonlinear system

T = 4-2y

y = 12— 322
This system can also be written by the single differential equation (12 — 32%)dz — (4 — 2y)dy = 0. Note that
this equation is exact, and separable, and upon integration, one obtains

4y —y? =122 — 2® + C.
this defines our solutions implicitly. In fact, we can use this directly. Define a function
H(z,y) =4y — 3> — 122 + 2.

Then H is conserved by the flow, and the flow must live along the constant level sets of H (the sets that
satisfy H(x,y) = C.) These sets are given by the figure.



