
MATH 421 DYNAMICS

Week 8 Lecture 2 Notes

1. Newtonian Systems of Classical Mechanics (cont’d.)

Last class we began a discussion on a particular type of mathematical models; those given by a second-
order differential equation. We will see that they exhibit the phase space incompressibility we mentioned.
Their structure actually exposes a lot about the dynamical behavior of systems of this type. First, some
easy examples:

Example 1. An object under the influence of gravity:

ẍ = −g, =⇒ s(t) = −g
t2

2
+ v0t + s0,

where v0 and s0 are the initial velocity and initial position, respectively.

Example 2. Harmonic Oscillator. Recall Hooke’s Law: the amount an object is deformed is linearly related
to the force causing the deformation. This translates to

ẍ = −kx, =⇒ x(t) = a sin
√

kt + b cos
√

kt,

where a and b are related to the initial starting position and velocity of the mass.

As stated above, note that any equation ODE of the form ẍ = f(t, x, ẋ) can be converted to a system of
two first order (generally coupled) ODEs of the form

ẋ = v

v̇ = f(t, x, v)

which defines a vector field (static one if t does not appear explicitly in the equations) on the (x, v)-state
space. For Newton’s Equation, the equivalent system is ẋ = v and v̇ = 1

mf(x).

Note: For the n-system governed by Newton’s Law f = ma, we get the 2n-system of first order equations
defined as

ẋ = v

v̇ = f (t, x, v)

The state space consists of the 2n-dimensional vectors
[

x
v

]
. The vector field of this 2n-system attaches

the vector V =
[

v
1
mf (x)

]
to each point

[
x
v

]
. The divergence of this vector field is

∇ · V =
n∑

i=1

∂

∂xi
(vi) +

n∑

i=1

∂

∂vi

(
1
m

fi (x)
)

= 0.

Hence the flow preserves volume.

This fact is now true for general Newtonian systems. One facilitating idea in Newtonian physics is
to, in essence, factor out the mass. Define a new variable p := mv as the (linear) momentum. Then
f = ma = f = mv̇ = ṗ, and the system becomes ẋ = p

m a,d ṗ = f(x). Not only does this make the system
easier to work with, it exposes some hidden symmetries within the equations of conservative systems.
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Now assume that the force f(x) is a gradient field (this means that the force is the gradient of a function
of position alone, or f = −∇V for some V (x). Then

f(x) = ma = mv̇ = −∇V.

We could also say that

ẋ =
p

m
ṗ = −∇V (x).

Here, the function V is called the potential energy (energy of position), and the energy of motion, the kinetic
energy is

K =
1
2
m ||v||2 =

1
2
m(vv̇).

The total energy H = K + V satisfies
d

dt
(H) =

dK

dt
+

dV

dt
= mv̇ · v +

∑

i=1

n
∂V

∂xi
· ∂xi

∂t
= mv̇ · v +∇V · v = (∇V + mv̇, v) = 0.

The conclusion is the total energy H is conserved as one evolves in a system like this. As H is a function
defined on the state space given by the vectors x and mv, the solutions to the system of ODEs are confined
to the level sets of this function. A system like this is called conservative, and is characterized by the idea
that the force field is a gradient field. You have seen this before in a different guise:

Example 3. Consider the nonlinear system

ẋ = 4− 2y

ẏ = 12− 3x2.

This system can also be written by the single differential equation (12− 3x2)dx− (4− 2y)dy = 0. Note that
this equation is exact, and separable, and upon integration, one obtains

4y − y2 = 12x− x3 + C.

this defines our solutions implicitly. In fact, we can use this directly. Define a function

H(x, y) = 4y − y2 − 12x + x3.

Then H is conserved by the flow, and the flow must live along the constant level sets of H (the sets that
satisfy H(x, y) = C.) These sets are given by the figure.


