MATH 421 DYNAMICS

Week 7 Lecture 2 Notes

1. INVERTIBLE S'-MAPS (CONT'D.)

Last class, we established some of the properties of the lifts of circle maps. We continue this now. Again,
let f:S' — S! be a circle map, and F : R — R a lift to R, defined as a map which satisfies the criterion
that fon(z) = 7o F(z) Vo € R, where 7 : R — S? is the standard projection given by the exponential map,
7(z) = €2™*  also denoted 7(z) = [z].

o if f is a homeomorphism, then |deg(f)| = 1.

Proof. Suppose that |deg(f)] > 1. Then |F(z+1)— F(x)| > 1. And since F(z 4+ 1) — F(x) is
continuous, by the Intermediate Value Theorem, Jy € (x,x + 1) where |F(y) — F(z)| = 1. But then
f (ly]) = f ([z]) for some y # x. Thus f cannot be one-to-one and hence cannot be a homeomorphism.

Now suppose that |deg(f)| = 0. Then F(xz+ 1) = F(z), Vz, and hence F is not one-to-one on the
interval (z,x + 1). But then neither is f, and again, f cannot be a homeomorphism. O

o F(z) — xdeg(f) is periodic.

Proof. Tt is certainly continuous (why?) To see that it is periodic (of period-1), simply evaluate this
function at = + 1:

F(z+1) = (z + 1)deg(f) = (F(z) + deg(f)) — (z + 1)deg(f) = F(z) — zdeg(f).
0

Example 1. Let f(z) = x. This is the “identity” map on S!, since all points are taken to themselves. A
suitable lift for f is the map F(z) = x on R. to see this, make sure the definition works. Question: Are
there any other lifts for f? What about the map F(z) = x + a for a a constant? Are there any restrictions
on the constant a? The answer is yes. For a to be an acceptable constant, we would need the definition of

a lift of be satisfied. Thus
[F(2)] = [z +a] = f([2]) = [2].

So the condition that a must satisfy is [z +a] = [z] on S!. Hence, a € Z. A new question: For a real number
a ¢ Z, can F(x) =z + a serve as a lift of a circle map? What sort of circle map?

Example 2. Let f(z) = 2". Thinking of = as the complex number x = 2™ for § € R, then
f(x) _ f (627Ti0) _ (627ri9)n _ 6271'1’(719).
Hence a suitable lift is obviously F'(z) = na (I say obviously, since the variable in the exponent is the lifted

variable!) Question: This is a degree n map. For which values of n does the map f have an inverse” And
what does the map f actually do for different values of n?

Example 3. Let f be a general degree-r map. Then F(1) — F(0) = r = deg(f). Suppose that F(0) = 0.
Then F(1) = r and if, for example, 7 > 1, it is now easy to see that there will certainly be a y € (0,1), where
F(y) = 1. This was a fact that we used in the proof above to show that f cannot be a homeomorphism. In
this case, where r > 1, at every point in y € (0,1) where F(y) € Z, we will have o F(y) = [F(y)] = 0 on S*.
This won’t happen when r = 1. When r = 0, the map F' will be periodic, which is definitely not one-to-one.
Question: What happens when r < 07 Draw some representative examples to see.

Definition 4. Suppose that f: S — S is invertible. Then

(1) if deg(f) =1, f is orientation preserving.
(2) if deg(f) = —1, f is orientation reversing.
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Recall from Calculus IIT that orientation is a choice of direction in the parameterization of a space (really,
it exists outside of any choice of coordinates on a space, but once you put coordinates on a space, you
have essentially chosen an orientation for that space. This is true at least for those spaces that actually are
orientable, that is (Mo bius Band?) On R, it is the choice of direction for the symbol “;”. On a surface, it is
a choice of side. In R3, one can use the Right Hand Rule. Etc. On S*, orientation preserving really means
that after one applies the map, points to the right of a designated point remain on that side. Orientation
reversing will flip a very small neighborhood of a point.

Circle maps may or may not have periodic points. And given an arbitrary homeomorphism, without
regard to any other specific properties of the map, one would expect that we can construct maps with lots
of periodic points of any period. However, it turns out that circle homeomorphisms are quite restricted.
because they must be one-to-one and onto, only certain things can happen. To explain, we will need another
property of circle homeomorphisms to help us.

Proposition 5. Let f : S — S be an orientation preserving homeomorphism, with F : R — R a lift. Then
the quantity
F(x) —
p(F):= lim a) -z

|n]—o0 n

(1) exists Vx € R,
(2) is independent of the choice of x and is defined up to an additive integer, and
(8) is rational iff f has a periodic point.

Given these qualities, the additional quantity p(f) = [p(F)] is well-defined and is called the rotation
number of f.

Some notes:

e p(R,) = a. (You should be able to actually calculate this using the definition. Do it.)
e p represents in a way the average rotation of points in a circle homeomorphism.
[ ]

Proposition 6. If p(f) =0, then f has a fized point.
Another way of saying that if there is no average rotation of the circle map, then somewhere
a point doesn’t move under f. This is like the Intermediate value Theorem on a closed, bounded
interval of R where a map is positive at one end point and negative at the other.
e If f has a g-periodic point, then for a lift F', we have F'9(z) = z + p for some p € Z. For example,
let f = Rg. Then a suitable lift for f would necessarily satisfy F7(z) = = + 6, Vx€ R. Question:
Write down two such lifts for this choice of map f.

Proposition 7. Let f : S' — S be an orientation preserving homeomorphism. Then all periodic
points must have the same period.

This last point is quite restrictive. Essentially, if an orientation preserving homeomorphism has a fixed
point, it cannot have periodic points of any other period, say. Note that this is not true of a orientation
reversing map. For example, the map which flips the unit circle in R? across the y-axis, will fix the two
points (0,1) and (0, —1), while every other point is of order two.

This is enough for circle homeomorphisms for now. And ends our work in Chapter 4. There is a great
section on frequency locking on page 141. Look it over at your leisure. We won’t work through it in the



course, but it is very interesting. Dynamically, it represents a situation where a linear flow on the torus (with
its uncoupled ODEs) becomes the limiting system to a system of coupled ODEs, representing a nonlinear
flow. Question: For this to be the case, must the resulting linear flow on the torus be a rational flow?

2. CHAPTER 5

really, in this short chapter, the onely thing I want to discuss is a way to understand toral flows in
higher dimensions. For this, let’s describe the space. By definition, the n-dimensional torus, or the n=torus,
denoted T™ is simply the n-fold product of n circles

n times
—_—~
T =5'x...x S,
Think of a system of equations where the n variables are all angular coordinates. Then
™ =R"/Z" =R/Z x --- x R/Z.
Recall the Kepler Problem. With n point masses, the resulting flow may be seen as linear motion on T".
Another way to view the n-torus is via an identification within R™. Remember the unit square with it
opposite sides identified plays a good model for the 2-torus, T = T2. The generalization works well here for
all the natural numbers. Take the unit cube in R3. Identify each of the opposite pairs (think of a die, and
identify two sides if their numbers add up to 7). The resulting model is precisely the T3. This works well if

one wants to watch a flow on T3. Simply allow the flow to progress in the unit cube, and whenever one hits
a wall, simply vanish and reappear on the opposite wall, entering back into the cube.

Note this also works well for n = 1: Take the unit interval and identify its two sides (the numbers x =0
and x = 1). This is what I mean by the phrase 0 = 1 on S*, where the circle is the 1-torus.

Now, the vector exponential map

(61, ...,0,) =B (e2mi01 . 2mitn)
maps R™ onto T". We can define a (vector) rotation on T" by the vector & = (a4, ..., o), where

Rz (Z) — (x1+a1,...,2p +0q) =2+ a4.

Note that it should be obvious that if all of the «;’s are rational, then the resulting flow on T™ whose
coordinate flows are x;(t) = z; + a;t will have closed orbits. The question is, are theses the only periodic
linear flows? We saw how it was the ratio of the two flow rates that determined whether the flow had closed
orbits on T2. But how do we define ratios in higher dimensions? By a notion of rational independence:

Definition 8. A set of n real numbers {«a;}._, is said to be rationally independent if there are no non-zero
integer solutions k = (ko, k1,...,k,) € Z" ! to

ko + kioqg + ...+ kpop, = 0.

Another way to say this is the following: There does not exist an integer vector k= (kiy...,kn) € Z™
where

Zkiai:E~d€Z,
n=1

unless ALL of the k;’s are simultaneously 0. We have the following:



Proposition 9. The linear flow on T whose time-1 map is the rotation Rg is minimal iff the numbers
Qai,...,alphay, 1 are rationally independent.

Example 10. On the two torus, let a; = % and ag = 7. The flow will be minimal here since the numbers
1, 3 and [n] are rationally independent:
~ 2ko + k1

k1
k0+?+k2ﬂ'—0 < T—WEQ,

at least for kg, k1, k2 € Z. On the other hand, let oy = 27 and as = %i. Since the ratio of the a’s is rational,

the flow is not minimal (all orbits are closed here. Given this definition, we would get rational dependence:
12k; + ko

——

While this may look impossible to solve for three integers kg, k1, and ko, the only stipulation is that not all

of the integers can be 0. But some of them can! Simply allow ky = 0. Then choose any non-zero integer as

your ki, and let ko = —12k;.

k
k0+277k1+%7r:0 — ko=

3. CHAPTER 6: CONSERVATIVE SYSTEMS

In Chapter 4, we first looked at what was considered “recurrent” behavior, which roughly means that the
orbit of a point, passes arbitrarily close to the point. This worked well in the classification of circle rotations,
since either the orbit of a point was closed (the orbit was periodic; the rotation was rational) or the orbit
was dense (for an irrational flow). In either case, and also for toral flows, every point was recurrent.

Contrast this with the dynamical systems that we studied in Chapters 2 and 3. Here, with examples
like contracting maps and sinks and sources, the only recurrent points were the fixed and periodic points,
and there were very few of those in each system. More generally, maps can exhibit much more complicated
behavior. To understand this behavior, we will have to broaden our idea of how to study such systems. This
chapter begins this study.

To start, let’s change our perspective. Given a dynamical system, let’s not worry about how an individual
orbit behaves so much as how a whole families of nearby orbits evolve. This would be more like following all
of the orbits that start in a small neighborhood over the evolution of the map. For a contraction, this would
be easy and not very insightful. (why?) But for a general map, this idea can be quite interesting.

4. INCOMPRESSIBILITY

Also called phase volume preservation, Suppose as one evolves via a flow, or iterates via a map, that the
volume of a small domain does not change. Then the volume is said to be preserved by the flow (map), or
the volume is invariant under the flow (map). Obvious examples include linear flows in R™, rotation maps
on S' (remember that volume in a space like R or S* is just length, and in dimension 2 is just area), and
linear toral flows. Examples which do not preserve volume include contraction maps, and flows (defined by
ODEs) that include sinks and sources (saddles, maybe, though).

In fact, if the map is by isometries (or the flow has all of its time-t map given by isometries), then the
volume will be preserved. this should be obvious, as if all of the distances between the points of a small
domain are preserved, the volume cannot change. The converse is not true however. Lots of maps and flows
preserve volume but are not isometries. This we will see to start the next class.



