
MATH 421 DYNAMICS

Week 7 Lecture 1 Notes

Linear flows on the 2-torus: an application (cont’d.)

Besides Lissajous figures, another application of Linear flows on the 2-torus T involves an area of dynamics
called Billiards. Our first example of such a dynamical system uses toral flows directly to give a very strong
conclusion.

Consider the unit interval I = [0, 1] with two point masses x1 and x2, with respective masses m1 and m2

respectively, free to move along I but confined to stay on I. Without outside influence, these point masses
will move at a constant, initial velocity. Eventually, they will collide with each other and with the walls.
Assume also that theses collisions are elastic, with no energy absorption or loss due to friction. Here, elastic
means that, upon a wall collision, a point mass’ velocity will only switch sign. And upon a point mass
collision, the two point masses will exchange velocities. For now, assume that m1 = m2 = 1.

The state space in R2 is

T =
{

(x1, x2) ∈ R2

∣∣∣∣ 0 ≤ x1 ≤ x2 ≤ 1
}

.

Here, T is the region in the unit square above the diagonal line which is the graph of the identity map on I
(can you see this?). The edges of the region T are included; since the point masses have no size, they can
occupy the same position at the point of contact. An interesting question to ask yourself is: How does the
state space change if the point masses had size to them?

Now, given an initial set of data, with initial positions and velocities v1 and v2, respectively, what is the
evolution of the system? The answer lies in the study of these types of dynamical systems called billiards.
Evolution will look like movement in T . A point in T comprises the simultaneous positions of the two
particles, and movement in T will consist of a curve parameterized by time t. The idea is that this curve
will be a line since the two velocities are constants. The slope of this line (at least before any collisions
have happened, will be v2

v1
. (why?) Once a collisions happens, though, this changes. There are two types of

collisions: Assuming that v2
v1

is the ratio of the velocities of the two point masses before a collision, we have

• When a point mass hits a wall, it “bounces off”, traveling back into i with equal velocity and of
opposite sign. Thus the new velocity is −v2

v1
.

• When the two point masses collide, they exchange their velocities (really,m think of billiard balls
here). Thus the new velocity is v1

v2
. Caution: This reciprocal velocity is NOT the slope of a perpen-

dicular line, which would be the negative reciprocal.

Envision these collisions in the diagram and the resulting trajectory curves before and after each type of
collision, as in the figure. What you see are perfect rebounds off of each of the three walls, where the angle
of reflection equals the angle of incidence. An ideal billiard table, although one with no pockets. Which
leads to the obvious question: What happens if a trajectory heads straight into a corner? For now, we will
accept the stipulation that

• When the two point masses collide with a wall simultaneously, either at separate ends of I or at the
same end, both velocities switch sign. While this will not change the slope of the trajectory, it will
change the direction of travel along that piece of trajectory line (se figure).

Some questions to ask:
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Q. Can there exist closed trajectories?
Q. Can there exist a dense orbit?
Q. The orbits of points in T will very much intersect each other and many trajectories will intersect

themselves also. The phase space will get quite messy. Is there a way to better “see” the orbits of
points more clearly?

The answer to the last question is yes, although this table is fairly special. Here, one can “unfold” the
table:

• Think of the walls of T as mirrors. When a trajectory hits a wall, it rebounds off in a different
direction. However, its reflection in the mirror simply continues its straight line motion. Think of a
reflected region T across this wall. The trajectory looks to simply pass through the wall and continue
on.

• Envision each collision that follows also via its reflection. Motion continues in a straight line fashion
through each mirrored wall. By continuing this procedure, the motion will look linear for all forward
time, no?

• This idea works because this particular triangle, under reflections, will eventually cover the plane in
a way that only its edges overlap and all points in R2 are covered by at least one triangle. This is
called a tiling of the place by T , and works only because T has some special properties. See below.

• The unfolded trajectory is called a linear flow on the billiard table R2.

So what does a billiard flow in R2look like? Obviously, it is just straight line motion at a slope v2
v1

forever
since there are no collisions. The better question to ask is: What does this tell us about the original flow on
the triangle T?

By continually unfolding (reflecting) the table T , on starts to notice that there are only 8 different
configurations: the four orientations of T given by rotations by multiples of π

2 radians, and the reflection
of each. If you collect up a representative of each of these configurations into a connected region, you wind
up with enough information to characterize the entire flow in R2: Each time your R2 linear flow re-enters a
region of a particular configuration of T , you can simply note the trajectory in your representative of that
region. This region of representative configurations is called a fundamental domain for the flow. One such
fundamental domain or this flow is the square of side length 2 in the figure. Noting the configurations, as the
trajectory leaves the square, it enters a configuration exactly like that at the other side of the square. One
can see the trajectory then re-enter the square from the other side. Similarly, when one leaves the square
at the top, it enters a configuration represented at the bottom of the square. Thus one can continue the
trajectory as if it had re-entered the square at the bottom.

Note: There was a famous arcade video game from the Middle Ages (you know, like, the 80’s!!) where
a space ship was planted in the middle of a square screen. It could turn but not move. Various boulders
(asteroids, actually: this was the name of the game) would float in and out of the screen. Should an asteroid
hit the ship, the game is over. The ship can fire a weapon at an asteroid, and if hit, would break into two
smaller ones, which would go off in different directions. The asteroids (or pieces of asteroids) always traveled
in a straight line. And as an asteroid left the screen, it would always reappear on the opposite side and
travel in the same direction. Really, the asteroids were only exhibiting a linear toral flow. Who would have
though that in playing this game, one was actually playing in a universe which was not the plane at all but
rather the torus T?
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Hence linear flows on R2 again look like toral flows on this fundamental domain, which comprises the
space of configurations of T as one uses T to tile R2. SO what do linear toral flows say about the trajectories
on T?

Proposition 1. If the ratio of initial velocities v2
v1
∈ Q, then the orbit is closed (on T and thus also on T ).

If v2
v1
6∈ Q, then the orbit is dense in T .

Note: Now, it is easier to see what a collision in a corner will look like. Like I said, this table T is quite
special in many ways. These ways do not generalize well. However, with T we can say much more:

Proposition 2. For any starting set of data (point mass positions and velocities), the trajectory will assume
at most 8 different velocity ratios.

Count them: There are two possible ratio magnitudes, each with two signs. That makes 4. But travel along
the lines of each of these slopes can be in each of the two directions due to the reflected configurations in
the fundamental domain.

How can one generalize these results to other tables:

• Unequal masses.
– An elastic collision between unequal masses will not result in what would look like a reflection

off of the diagonal wall in T . One could certainly accurately chart the collision as a change in
direction off of the wall. However, when unfolding the table, the resulting flow in R2 will not
be linear (each reflected trajectory through the diagonal wall will be a change in direction in
the planar flow. You will see a piecewise linear flow in R2 and hence also on the fundamental
domain T. While this is workable, it is not such as easy leap to a conclusion.

– One can also actually change the table. Use momenta to define the collision between the point
masses, and alter the diagonal wall to be a perfect reflective wall. The resulting will not be
linear. The new table will not tile the plane anymore, but in many cases the unfolded table
will cover the plane with many holes (the reflecting curve will be concave, so will fit into the
original T . The unfolded flow will look liner until it hits a hole, where it will reflect through
he hole perpendicularly through its center axis and appear on the other side to continue at the
same slope. I haven’t worked out the details here (and a hat tip to Jonathan Ling who started
to work on this idea), but there should be results here that are similar to the original table T ,
as long as one is careful with the analysis.

• Other tilings of R2. It is easy to see that some shapes tile the plane while others do not. Rectangles,
and a few other triangles work fine. And a few other polygonal shapes, like regular hexagons also.
There are some examples in the book. But examples are fairly rare. And in each case, one would
need to find a fundamental domain and then interpret the resulting flow on that domain in terms
of the original flow as well as that on the place. All good stuff, and are the initial ways one may
study polygonal billiards. However, later, we will generalize our analysis of billiards in a completely
different direction.

One more application of linear toral flows: The Kepler Problem: Consider two point masses moving
in an inverse square gravitational field. Assume that they do not interact or influence each other. Then
their equations of motion are second order homogeneous (and separable). Total energy is conserved (this is
actually the solution function when using the method one is taught in ODEs to solve separable equations)
as is total angular momentum. Hence flow is planar, and confined to an ellipse (hence each point mass has
periodic flow of some period independent of the other). For two particles, the flow would be confined to a
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torus again (two separate periodic flows, although in this case, the flow would look a bit more like that of
the flow in R4 above. The flow would be linear in a space where momenta is used instead of velocity. Then,
one can easily say whether the two point mass system will ever reach its starting positions simultaneously
again based on whether the ratio of the momenta is rational or not. Pretty easy result for such a complicated
system. Two other thoughts:

Q. Can you now see the similarity between the Kepler Problem and the HW assignment I gave you
concerning the rotation of the earth and the lunar rotation?

Q. What would the Kepler Problem look like for three point masses in the same field? Where would
the resulting flow reside? Can we make a concluding statement about the flow in such an easy way
as for only two point masses?

We will return to the last questions in short order. But first, let’s return to circle maps. At this point,
however, let’s talk about more general complicated maps on such a simple space as S1.

1. Invertible S1-maps.

Let’s return to maps on the circle, and try to gain more general information than by using simply rigid
rotations. Again, think of S1 as the identification space S1 = R/Z, given by the level sets of the map

π : R→ S1, π(x) = [x] .

One easy way to think about [x] s to simply take any real number and disregard the integer part. Thus
[2.13] = .13, and [e] = e− 2. We will call π a projection of R onto S1

Proposition 3. For any continuous map f : S1 → S1, there exist an associated map F : R → R, called a
lift of f to R, where

f ◦ π = π ◦ F, equivalently f ([x]) = [F (x)] .

Some Notes:

• One way to see this is vis the commutative diagram

R F−−−−→ R

π

y
yπ

S1 f−−−−→ S1

.
• The lift F is unique up to an additive constant (sort of like how the anti-derivative of a function is

unique only up to an additive constant, right?)
• The quantity

deg(f) = F (x + 1)− F (x)
is well-defined for all x ∈ R and is called the degree of f .

• If f is a homeomorphism, then |deg(f)| = 1.
• The structure of F is quite special. It looks like the sum of a periodic function with the line

y = (deg(f)) x. This is due to the structure of the projection π.

So just how much information about f can we learn by the study of the lifts of f? Certainly, maps on R
are fairly easy to study. And maps with the structure of the lifts F may be easier still. If we can use these
lifts to say fairly general things about how an f may behave, this would be quite important. For example,
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this quantity deg(f) is defined solely by a choice of lift f . We will see just what information deg(f) conveys.
For a moment, let’s first take a look at why some of the assertions we just made are true.

• Lifts always exist. Simply construct one using the definition. I leave this as an exercise.
• F is unique up to a constant.

Proof. Suppose F is another lift. Then[
F (x)

]
= f ([x]) = [F (x)] , ∀x ∈ R.

This is just another way of saying that π ◦ F = f ◦ π = π ◦ F , ∀x ∈ R. But then F − F ia
always an integer! (why?) But F − F is the difference between two continuous functions, and
hence is continuous. But a continuous function on R that take values in the integers is necessarily
constant. ¤

• deg(f) is well defined.

Proof. Here deg(f) = (F (x + 1)− F (x)) is a continuous function on R that takes values in the
integers (it must, due to the projection π). Thus it also is a constant for all x ∈ R. ¤

We will continue this establishment of the above assertions in the next class.


