MATH 421 DYNAMICS

Week 6 Lecture 2 Notes

LINEAR FLOWS ON THE 2-TORUS (CONT’D.)
Given S = {62”” € (C}, and Cfi—f = a, 2(0) = ¢ an IVP defined on S', we saw last time that even though
the flow ¢! () = at + z had as its time-1 map
¢o(r) =a+z=Ry(x), zeS'

a rotation of the circle, the continuous flow was not interesting dynamically. However, we can generalize this
flow to a situation which does produce somewhat interesting dynamics.

Consider now a flow given by the pair of uncoupled circle ODEs:

dzry dxo
—_— =W s —_— = W9.
dt b 2
t=0 t=1 This system, which can be written as the uncoupled vector ODE T = W,
X1 X+ o or [ ;L;l } = [ zl ], can be viewed as defining a flow on the two-torus
| 1 2 2
2 X+ o, T = S! x S1, and has the solution
7= xr1 + wlt
T o twot |

In flow notation, we can write either
t t — — —
T (w1, 02) = (21 +wit, 2 +wat), or (@) = 7 + Wt.

Graphically, solutions are simply translations along R or as straight line motion in R?. Note that in this last

interpretation, the slope of the solution line is v = #2.
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However, each of these uncoupled ODEs also can be considered as a flow
on S', and hence the system can be considered a flow on S! x S' = T. Sup-
pose, for example, that 1 < w; < 2, while 0 < ws < 1. The flow from time
t = 0 to time ¢ = 1 would take the origin on one circle to the point 1 — wy, X,
and the flow line would start at x; = 0 and travel once around the circle be-
fore stopping to wy. The flow on the other circle would take x5 = 0 partway | Xt o
around the circle to wy. Viewed via the two periodic coordinates of T, we have the flow line in the picture:

X, 0, =1

slope =y = %

Another way to see this is to go back to the plane and consider the

equivalence relation given by the exponential map on each coordinate.

’; X2 The set of equivalence classes are given by the unit square in the plane,

\ — / under the idea that the left side of the square (the side on the z; = 0-line)
S~ and the right side (the x; = 1-side) are considered the same points (this is

X; the 0 = 1 idea of the circle identification). Similarly, the top and bottom

of the square are to be identified. Then the flow line at the origin under the ODE system is a straight line of
slope v emanating from the origin and meeting the right edge of the unit square at the point (1,v). But by
the identification, we can restart the graph of the line at the same height on the left side of the square (at the
point (0,~). Continuing to do this, we will eventually reach the top of the square. But by the identification

again, we will drop to the bottom point and continue the line as before. In essence, we are graphing the flow
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slope=y=% -

1 X; 1 X,

line as it would appear on the unit square. When we pull this square out of the plane and bend it to create
our torus T, the flow line will come with it. Suppose v € Q. What can we say about the positive flow line?

Proposition 1. if v = :—f is irrational, then the flow is minimal. If v € Q, then every orbit is closed.

Proof idea. Choose any circle (an easy-to-see choice would be the 21 = 0 circle, which is represented in the
plane by the left edge of the unit square). We could call this the waist circle. Then for any point (0,y) on
the waist circle, the first-return map of (9:6 v) is exactly the rotation map of this circle given by R,. As the

entire waist circle flows around T, and with the irrational rotation, the orbit (9?6 Y) will intersect the waist
circle densely, the orbit of (0,y) (and hence every point) will be dense in all of T.

For the other statement, simply show that the orbit of every point will eventually return to its starting
point, and since the flow is always along straight lines, this is enough to show the periodicity of any and
hence all points. O

Example 2. We can look at this another way: Think of S' € R? as a circle of radius 7 centered at the
origin. Then we can represent T as the set

T= { (z1,T0,23,24) € RN 22 + 22 =12, 22422 = 7"2}.
Now recall a continuous rotation in R? is given by the linear ODE system 7 = B, 7T, where B is the matrix

[ _Oa ((J; } whose eigenvalues i are purely imaginary. Do this for each pair of coordinates (each of two

copies of R?) to get the partially uncoupled system of ODEs on R*,

X1 0 o 0 0 T

_J.;) _ A? ) _ —Q 0 0 0 To
’ T3 0 0 0 (65) I3

Xy 0 0 — Q2 0 T4

We will eventually see that this is the model for the spherical pendulum.

Some notes:
e The two circles 27 + 23 = 7?2 and 23 + 23 = r3 are invariant under this flow.
e We can define angular coordinates on T via the equations
T1 =T1C082mp1 X2 = T18in2mwpq

T3 = T2 COS2MPa T4 = T2 SIN 27 Y3.
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Then, restricted to these angular coordinates and with w; = §t, ¢ = 1,2, we recover
Y1 =—wi, P2 =—wa.

Motion is independent along each circle, and the solutions are ¢;(t) = w;(t — to).
o If 3—? = i—f ¢ Q, then the flow is minimal.

Exercise 1. Do the change of coordinates explicitly to show that these two interpretations of linear toral
flows are the same.

Now, for a choice of @ and 1 =19 =1, project a solution onto either the (z1,x3) or the (3, x4)-planes.
The resulting figure is a plot of a parameterized curve whose two coordinate functions are cosine (resp. sine)
functions of periods which are rationally dependent iff @ is rational. In this case, the figure is closed, and
is called a Lissajous figure. See the figure below for the case of two sine functions (projection onto the
(z2,x4)-plane, in this case), where w; = 2 and wy = 3.
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Q. What would the figure look like if w; and w, were not rational multiples of each other?

A nice physical interpretation of this curve is as the trajectory of a pair of uncoupled harmonic oscillators,
given by
Cl.'.l = —Wwil

1‘2 = —WaTq.

Next class, we will begin a study of a related type of dynamical system called a billiard. In one of its
most elementary forms, the model of straight-line motion in the plane and its corresponding linear flow on
a 2-torus again appear.



