
MATH 421 DYNAMICS

Week 3 Lecture 1 Notes
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We begin today’s lecture with a proof of our last assertion from
last class:

Proposition 1. For the C0 map f : [α, β] → [α, β], f must have
a fixed point.

Remark 2. Again, visually, this should make sense. Try to draw
the graph of a continuous function in the unit square in a way that
is does NOT intersect the diagonal.

Proof. Suppose for now that f has no fixed point on (α, β) (this
seems plausible, since our example above f(x) = x2 on [0, 1] satis-
fies this criterion). Then, it must be the case that for all x ∈ (α, β),
either (a) f(x) > x, or b) f(x) < x. This means that the entire
graph of f lies above the diagonal, or below it, respectively (See
the figure).

If we are in situation (a), then for any choice of x ∈ (α, β), Ox

will be an increasing sequence in [α, β]. It is a known fact in analysis that an increasing sequence which is
bounded above must converge (this is taught in our course 110.113 Honors Single Variable Calculus). For
case (b), the orbit is strictly decreasing, and will be bounded below since the entire sequence live in the closed
interval [α, β]. Thus we can say that Ox −→ x0, for some x0 ∈ [α, β] (we can also say lim

n→∞
fn(x) = x0).

What can this point x0 look like? Well, for starters, it must be a fixed point! To see this,

f(x0) = f
(

lim
n→∞

fn(x)
)

= lim
n→∞

fn+1(x) = lim
n→∞

fn+1(x) = x0.

Since there are no fixed points in (α, β) by assumption, it must be the case that either x0 = β (case (a)), or
x0 = α (case (b)). ¤

This last proof immediately tells us the following:

Proposition 3. Let the C0-map f : [α, β] → [α, β] be non-decreasing, and suppose there are no fixed points
on (α, β). Then either

• exactly one end point is fixed and ∀x ∈ [α, β], Ox converges to the fixed end point, or
• Both end points are fixed, one is an attractor and the other is a repeller.

And if in the second case above, f is also invertible (f increasing is enough for this to be the case), then
forallx ∈ (α, β), Ox is forward asymptotic to one end point, and backward asymptotic to the other.

For the first case, think of the map f(x) =
√

x on the closed interval [1,∞). For the second case, think
g(x) = x2 on [0, 1]. We can make the above proposition a bit clearer by adding to our definitions of orbits:

Definition 4. Let f : [α, β] → [α, β] be C0 and invertible (it has continuous inverse f−1(x)). Then

• Ox :=
{

y ∈ [α, β]
∣∣∣∣ y = fn(x), n ∈ Z

}

• O+
x :=

{
y ∈ [α, β]

∣∣∣∣ y = fn(x), n ∈ N
}
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• O−x :=
{

y ∈ [α, β]
∣∣∣∣ y = fn(x), n ∈ −N

}
.

Then in the last statement of the Proposition above, we can say: For f invertible, then ∀x ∈ (α, β), either
O+

x −→ α and O−x −→ β, or O+
x −→ β and O−x −→ α.

Let’s elaborate on this forward/backward orbit thing. Suppose now that f : X → X is a C0-map on some
subset of Rn, and suppose ∃x ∈ X, where

O−x −→ a and O+
x −→ b.

Definition 5. x is said to be heteroclinic to a and b if a 6= b, and homoclinic to a if a = b.

You have certainly seen heteroclinic and homoclinic orbits before. Think of the phase plane of the
undamped pendulum. It is the famous picture below (to follow). Here the separatrices are heteroclinic
orbits from the unstable equilibrium solution at (2nπ, 0), n ∈ Z, and (2(n ± 1)π, 0). Although, in reality,
there is a much more accurate picture of the phase space of the undamped pendulum. The vertical variable
(representing the instantaneous velocity of the pendulum ball, actually) takes values in R, while the horizontal
variable (representing the angular position of the pendulum ball with respect to downward vertical position)
is in reality 2π-periodic. Truly, it takes values in the circle S1:

S1 = unit circle in R2 =
{

eiθ ∈ C
∣∣∣∣ θ ∈ [0, 1)

}
.

Thus, the phase space is really a cylinder, and really only has two equilibrium solutions; one at (0, 0), and
the other at (π, 0). In this view, which we will elaborate on later, there are only two separatrices, and both
are homoclinic to the unstable equilibrium at (π, 0). Also, it becomes clear once the picture is understood
that ALL orbits of the undamped pendulum, except for the separatrices, are periodic. However, the period
of these orbits is certainly not all the same. And there is NO bound to how long a period may actually be.
See if you can fully grasp this.

Other things to think about:

• There cannot exist homoclinic points for f a nondecreasing map on an interval. Why not?
• Is it possible to have a homoclinic fixed point on S1? (Hint: Construct one. There is an example of

an interval map that we already studied in this class that can be modified to work here.)

Forcing a map of an interval to be nondecreasing and forcing the interval to be closed really restricts the
types of dynamics that can happen. For instance,

Proposition 6. Let f : [α, β] → [α, β] be C0 and nondecreasing. Then ∀x ∈ [α, β], either x is fixed, or
asymptotic to a fixed point. And if f is increasing (and thus invertible), then ∀x ∈ [α, β], either x is fixed or
heteroclinic to adjacent fixed points.

Clearly, the dynamics, although more complicated than for contraction maps, are nonetheless rather
simple for nondecreasing interval maps (and even more so for invertible interval maps. Thus goes the second
stop in our exploration of dynamical systems from simple to complex.

Before moving on, one more statement. The last Proposition presents another interesting phenomenon:

• In the case of an increasing (invertible) map, where the fixed points are separated by regions of
non-fixed points (remember that for the map f(x) = x, all points are fixed), all orbits that start
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between two fixed points wind up staying within the same two fixed points. This lends weight to
the Proposition above about the interval without fixed points in the interior and what happens at
the endpoints. Thus maps interval maps can be broken down to maps on the subintervals formed by
each pair of adjacent fixed points.

• If every point is either fixed or tends to a fixed point for an non-decreasing map, then how possibly
can a period-2 point occur? periodic orbit are neither fixed nor do they “tend” anywhere but
themselves. hence another interesting property of nondecreasing interval maps: There cannot exist
non-trivial periodic points. We will see later just how special this is.

• If we vary an increasing interval map slightly, usually the dynamical behavior of the map stays the
same (the number and type of fixed points does not change, even thought their position may a bit).
This may not be the case for a non-decreasing map: A slightly perturbed increasing map will remain
increasing, while a slightly perturbed map with a flat interval may not remain nondecreasing. Think
about that.

• Sometimes, a small change in an increasing map may lead to a big change is the number and type
of fixed points (i/e/, a big dynamical change!). Consider the three graphs below. Do you recognize
this behavior? Have you ever seen a bifurcation in a mechanical system with a parameter?

Figure 1. A bifurcation in an interval map.

1. Time-t and First Return Maps

We will skip the sections on phase lines and 1-dimensional ODEs due to their full coverage in the prereq-
uisite course for this one: 110.302 Differential Equations. Instead, we will jump directly to Section 2.4.3 in
the book.

Recall that the time-1 map of an ordinary differential equation defines a discrete dynamical system on
the phase space. Indeed, for x ∈ Rn, the system ẋ = f(x) defines the map

φ1 : Rn → Rn, φ1 : x(0) 7→ x(1)

which is a transformation of Rn. Really, t = 1 is only one such example, and any t will work, so long as the
system solutions are defined (and unique, for the most part). Place picture of phase space time-t map here.

There is another kind of discrete dynamical system that comes from a continuous one: the First Return
Map. One can view the first return map as a local version (only defined near interesting orbits) of the
more globally defined time-t map (defined over all of phase space). Let’s start with a 2-dimensional version.



4

Consider the system on polar coordinates (Phase place pic to follow):

(1)
ṙ = r(1− r)
θ̇ = 1

.

Without solving this system (although this is not difficult as the equations are uncoupled), we can say a lot
about how solutions behave:

• The system is autonomous, so when you start does not matter, and the vector field is constant over
time,

• The only equilibrium solution is at the origin. The second equation in the system really states that
no point is fixed when θ is uniquely defined (on [0, 2π), that is) for a choice of point in the plane.
But the origin is special in polar coordinates.

• r(t) ≡ 1 is a periodic solution (the only one?) and called a cycle. What is the period?
• r(t) ≡ 1 is asymptotically stable as a cycle, and is called a limit cycle. can you see why?

Now define

I =
{

[α, β] ⊂ vertical axis
∣∣∣∣ 0 < α < 1, β > 1

}
.

or each x ∈ I, x = rx(0), the initial value for some solution rx(t) of Equation 1. Let yx be the point in I
which corresponds to the earliest positive time that the resulting rx(t) again crosses I. One, it must cross
again (why?), and two, really yx = rx(2π). Then the map φ : x 7→ yx defines a discrete dynamical system
on I.

Next class, we will look at some of the properties of this discrete dynamical system.


