
MATH 421 DYNAMICS

Week 2 Lecture 2 Notes

The Contraction Principle proved last class is a facet of some dynamical systems which display what is
called “simple dynamics”: With very little information about the system (map or ODE), one can say just
about everything there is to say about the system. Another way to put this is to say, that in a contraction,
all orbits do exactly the same thing. Which is, they all converge to the same fixed point (equilibrium solution
in the case of a continuous dynamical system.

We can build on this idea by now beginning a study of a relatively simple family of discrete dynamical
systems that display slightly more complicated behavior.

1. Interval Maps

Let f : I → I be continuous map, where I = [0, 1] (we will say f is a C0-map on I, or f ∈ C0(I, I)). The
graph of f sits inside the unit circle [0, 1]2 = [0, 1]× [0, 1] ⊂ R2.
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This graph intersects the line y = x at precisely the points where y = f(x) =
x, or the fixed points of the dynamical system given by f on I. Recall that the
dynamical system is formed by iterating f on I, and

Ox0 =
{

x0, x1 = f(x0), x2 = f(x1) = f2(x0), . . .
}

.

One can track Ox0 in I (and in [0, 1]2) visually via the notion of cobwebbing.
We will use the example of f(x) = x2 on I to illustrate:

Choose a starting value x0 ∈ I. Under f , the next term in the orbit is x1 = f(x0). Vertically, it is the
height of the graph of f over x0. Making it the new input value to f means finding its corresponding place
on the horizontal axis. This is easy to see visually. The vertical line x = x0 cross the graph of f at the
height x1 = f(x0). The horizontal line y = x1 = f(x0 crosses the diagonal y = x precisely at the point
(x1, x1). The vertical line through this point will again intersect the graph of f at one point (why only
one?). That point will be at the height x2 = f(x1) and constitutes the second value of the sequence Ox0 .
Continue zig-zagging this way and the orbit of the point x0 visually appears. There is a nice Java applet
under the title ”Emergence of Chaos” on the website www.cut-the-knot.org (you will have to sort through a
lot of other very interesting Java applets) which uses cobwebs to display orbits of a certain kind of interval
map. Check it out.
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Specific to our example f(x) = x2 on I, we have two fixed
points: x = 0 and x = 1. And if x0 is chosen to be strictly
less than 1, then we can easily conclude via the cobweb that
Ox0 −→ 0. Visually, it makes sense. Analytically, it is also
intuitive; squaring a number between 0 and 1 always makes it
smaller. However, can you prove that every orbit goes to 0 except
for the orbit? We will do something like this shortly.

First we will need some definitions which will allow us to
talk about the nature of fixed points in terms of what happens
around them. This language is a lot like the way we classified
equilibrium solutions in the ODEs class. For the moment, think
of X as an interval in R. However, in these definitions, you can

readily allow X to be ANY metric space, and the absolute-value signs are simply metric distances.

Date: February 19, 2010.

1



2

Definition 1. Let x0 be a fixed point of the C0-map f : X → X. Then x0 is said to be

• Poisson stable if ∀ε > 0, ∃δ > 0 such that ∀x ∈ I, if |x− x0| < δ, then ∀N ∈ N |fn(x)− x0| < ε.
• asymptotically stable, or an attractor if ∃ε > 0 such that ∀x ∈ I, if |x− x0| < ε, then Ox −→ x0.
• a repeller, if ∃ε > 0 such that ∀x ∈ I, if 0 < |x− x0| < ε, then ∃N ∈ N such that ∀n > N ,
|fn(x)− x0| > ε.

Remark 2. Asymptotically stable basically means that there is a neighborhood of the fixed point where f
restricted to that neighborhood is a contraction with x0 as the sole fixed point. Poisson stable means that
given any small neighborhood of the fixed point, I can choose a smaller neighborhood where if I start in
the smaller neighborhood, the forward orbit never leaves the larger neighborhood. Asymptotically stable
points are always Poisson stable, but not necessarily vice versa. And a fixed point is a repeller if in a small
neighborhood of the fixed point, all points that are not the fixed point itself have forward orbit that leave
the neighborhood and never return.

Remark 3. In the classification of 2× 2, first-order, homogeneous, linear ODE systems, one can classify the
type of the equilibrium solution at the origin via a knowledge of the eigenvalues of the coefficient matrix. IN
this classification, the sink (negative eigenvalues) was the asymptotically stable equilibrium, the source was
the repeller, and the center (recall where the two eigenvalues were purely imaginary complex conjugates)
was the Poisson stable equilibrium,

Remark 4. Back to the example of f(x) = x2 on [0, 1]. This dynamical system has two fixed points. One can
see visually (via cobwebbing or via an analysis of the properties of the orbits) that x = 0 is asymptotically
stable. Whereas x = 1 is unstable and a repeller. Can you show that these two points satisfy the respective
definitions? Can you analytically prove that one is an attractor and the other is a repeller?
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In this class, we will spend a fair amount of time on the maps
f : [0, 1] → [0, 1]. There are basically two reasons for this: 1) They
have applications beyond simple interval maps, and 2) maps of the
unit interval are really all one need study when studying intervals.
To see the second point, let f : R → R, but suppose that there
exists a closed interval [a, b], b > a (a single point is considered
a closed interval, so the condition that b > a means that I want
something with an interior), where

f

∣∣∣∣[a,b] : [a, b] → [a, b].

• Dynamically speaking, what happens to f(x) under iter-
ation on [a, b] is no different from what happens to g(y)
on [0, 1] under the linear transformation of coordinates
y = x−a

b−a .
• It is usually an f(x) from above that appears in applica-

tions, and mathematically we usually only study maps like
g(y). For example, let’s go back to the Newton Raphson
Method for root location.

Definition 5. A fixed point x0 for f : I → I where f ∈ C1 is called superattracting if f ′(x0) = 0. (Why?
See the picture.)
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Proposition 6. Let f : R→ R be C3 with a root r. If ∃δ > 0, M > 0 such that |f ′(x)| > δ and |f ′′(x)| < M
on a neighborhood of r, then r is a superattracting fixed point of

F (x) = x− f(x)
f ′(x)

.

Proof. As we have already calculated, F ′(r) =
f(r)f ′′(r)
[f ′(r)]2

= 0. ¤

We can go further, and I will state this part without proof: Since f is C3, then F is C1. Calculating
F ′(x) and knowing that it is both continuous and 0 at x = r, there will be a small, closed interval [a, b],
b > a with r in the interior, where |F ′(x)| < 1. One can show that that restricted to this interval,

F

∣∣∣∣[a,b] : [a, b] → [a, b]

is a λ-contraction, with a superattracting fixed point at r. In this case, all orbits of F converge exponentially
to r by λ2, even thought F is simply a λ-contraction.

Interval maps are quite general, and display tone of diverse and interesting behavior. To begin exploring
this behavior, we will need to specify some types of interval maps. The first type designation is as follows:

Definition 7. A map f : [α, β] → [α, β] be C0. We say f is

• increasing if for x > y, we have f(x) > f(y),
• nondecreasing if for x > y, we have f(x) ≥ f(y),
• non-increasing if for x > y, we have f(x) ≤ f(y),
• decreasing if for x > y, we have f(x) < f(y).

It is easy and intuitive to see how these definitions work. You should draw some examples to differentiate
these types. You should also work to understand how these different types affect the dynamics a lot. For
example, increasing and non-decreasing map can have many fixed points (actually, the map f(x) = x has
ALL points fixed!). While all non-increasing maps (hence all decreasing maps also) can have only one fixed
point each. Further, increasing maps cannot have points of period two (why not?), while there exist a
decreasing map with ALL points of period two (can you find it?). We will explore these in time. For now,
we will start with a fact shared by ALL interval maps:

Proposition 8. For the C0 map f : [α, β] → [α, β], f must have a fixed point.
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Remark 9. Visually, this should make sense. Try to draw the graph of a continuous function in the unit
square in a way that is does NOT intersect the diagonal. When you get tired of trying, read on.

We will prove this next class....


