
MATH 421 DYNAMICS

Week 12 Lecture 2 Notes

1. Topological Entropy (cont’d.)

We begin today with a definition:

Definition 1. Let hd(f, r) := limn→∞
log Sd(r, n, f)

n
. Then

hd(f) := lim
r→0

hd(f, r)

is called the topological entropy of the map f on X.

There are many things to say about this. To start:

• Another common notation for topological entropy is htop(f) or hT (f) or even h(f). These are, in
a sense, more accurate since it turns out that the topological entropy of a map does not actually
depend on the metric d, at least up to equivalence, chosen for use in its definition. This was a mistake
I made in class, mentioning that even inequivalent metrics lead to the same entropy. We will use the
notation h(f) in our subsequent discussion.

• Contractions and isometries have no entropy:

Proposition 2. Let f be either a contraction or an isometry. Then h(f) = 0.

Proof. In the case of f an isometry, for any n ∈ N, df
n = d, since distances between iterates of

a map are the same as the original distances between the initial points. Hence the r-capacity
S(X,d)(r, n, f) = S(X,d)(r, f) does not depend on n, and hence h(r, f) = 0. For a contraction, the
iterates of two distinct points are always closer together than the original points. Hence also here
df

n = d. This leads to the same conclusion. ¤

• Topological entropy is a dynamical invariant (invariant under conjugacy). This means that if f is
(semi-)conjugate to g, then h(f) = h(g). However, it is also useful to use the contrapositive: If one
has two maps where h(f) 6= h(g), then it is not possible that f is (semi-)conjugate to g.

• topological entropy measures, in a way, the exponential growth rate of the number of trajectories
that are r-separable after n iterations. Suppose this number is proportional to enh. Then h would
be the growth rate for a fixed r, and as r → 0, this h would tend to the entropy.

• defining the topological entropy for a flow is simply a matter of replacing the n ∈ N with t ∈ R in
all of the definitions for the invariant. we can relate the two in a way: The topological entropy of a
flow is equal to the topological entropy of its time-1 map (really, its time-t for any choice of t, since
the flow provides the conjugacy of any t-map with any other).

• In practice, topological entropy is quite hard to calculate. However, in many cases, and in response
to the last bullet point, the entropy is directly related to the largest Lyapunov exponent of the
system, at least for C1 systems.

Proposition 3. For the expanding map Em : S1 → S1, where Em(x) = mx mod 1, and |m| ≥ 1, h(Em) =
log |m|.

Proposition 4. For f : T2 → T2, given by ~x =
[

2 1
1 1

]
~x (this was the map FL from before), h(f) =

log 3+
√

5
2 .
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Note: In both of these cases, the topological entropy of the map IS the maximum positive Lyapunov exponent
of the system.

Example 5. Show that h(E2) = log 2.

To do this calculation, we will need to quantify the r-capacity of S1 under this map. This amounts to
calculating S(S1,d) (r, n, E2) for a fixed r and as a function of the iterate number n. hence we start with a
good idea of what constitutes the actual size of an r-ball Br (x, n, E2) for a choice of n. Note first that by its
definition, Br (x, n,E2) is the set of points whose distance away from x is less than r after n iterates of E2.
As the map is expanding by a factor of 2 (locally), distances double after each iterate (see the figure). Hence
we will have to get closer to x when we start iterating to remain within r as we iterate. Hence Br (x, n, E2)
will shrink in size as n increases. How will it shrink?

Suppose for a minute that r = 1
4 . Choose an x ∈ S1, and recall that

B 1
4

(x, 0, E2) =
{

y ∈ S1

∣∣∣∣ dE2
0 (x, y) = d(x, y) = |x− y| < 1

4

}
.

The radius of Br (x, n, E2) is 1
4 here. After one iterate, however,

B 1
4

(x, 1, E2) =
{

y ∈ S1

∣∣∣∣ dE2
1 (x, y) = max {|x− y|, |2x− 2y|} <

1
4

}
.

Here, it is obvious that the condition that dE2
1 (x, y) = |2x− 2y| = 2|x− y| < 1

4 means that the actual
distance between x and y would have to be |x− y| < 1

4 · 1
2 = 1

8 . Hence the radius of B 1
4

(x, 1, E2) is only 1
8 .

Similarly, the radius of B 1
4

(x, 2, E2) is only 1
16 , and in general we have that

radius
(

B 1
4

(x, n, E2)
)

=
1
4
· 1
2n

.

But, really, the initial size of r does not determine the relative sizes of the r-balls with respect to each other.
Hence, we can say that, for any choice of r > 0, we have

radius
(

Br (x, n,E2)
)

= r · 1
2n

.

Recall that the r-capacity, S(S1,d) (r, n, E2) is the minimum number of the r-balls Br (x, n,E2) it takes to
cover S1. Think of S1 as being parameterized by the unit interval [0, 1] with the identification of 0 and 1.
Then we really only need to find out how many r-balls we need for a given iterate n to cover an interval of
length 1. Call this number Kn. Hence, we solve the equation (really, it is an inequality, but since adding
one more ball to each quantity will not change the limit, this is an okay simplification)

#
(

Br (x, n, E2)
)
· 2 · radius

(
Br (x, n,E2)

)
= Kn · 2 · r · 1

2n
= 1.

Which is solved by Kn = 1
r · 2n−1. This is S(S1,d) (r, n, E2).
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We now calculate

h (E2, r) = lim
n→∞

log S(S1,d) (r, n,E2)
n

= lim
n→∞

log 1
r · 2n−1

n

= lim
n→∞

(
log 1

r

n
+

log 2n−1

n

)

= 0 + log 2 ·
(

lim
n→∞

n− 1
n

)
= log 2.

Here again, the r-topological entropy does not depend on r at all, so that

h (E2) = lim
r→0

h (E2, r) = lim
r→0

log 2 = log 2.


