
MATH 421 DYNAMICS

Week 11 Lecture 1 Notes

1. Chaos and Mixing

Recall a map f : X → X on a metric space is topologically transitive if there exists a dense orbit. Some
examples that we looked at included the irrational rotations of S1 and the irrational linear flows on the two
torus T2. Note that these examples had no periodic points at all, and all orbits were dense. Contrast that
with the idea some dynamical systems seemed to be full of periodic points. Think of rational rotations of S1

and rational linear flows on T2. Again, on these examples, all points were periodic, and none of these maps
are topologically transitive.

These properties seem to be mutually exclusive, and are when the dynamics are relatively simple to
describe. However, for dynamical systems which possess both a dense supply of periodic orbits as well as a
dense orbit, the dynamics can be labeled quite complex. How complex?

Definition 1. A continuous map f : X → X of a metric space is said to be chaotic if

• f is topologically transitive,
• Per(f) = X.

Notes:

• This really is one of the better universal definitions we have for the concept.
• Either property without the other means that the dynamics are relatively simple to describe.

Some examples that we were recently playing with:

(1) Let Em : S1 → S1 be the linear expanding map of S1, for |m| > 1.
(2) Let fλ : C → C be the logistic map for λ > 4, restricted to the Cantor set of point whose orbit lies

completely within the unit interval.
(3) Let FL : T2 → T2 be the linear hyperbolic automorphism of the two-torus given by the linear

automorphism of the plane determined by the hyperbolic matrix L.

In the first and third cases, we showed that the periodic points are dense in the respective spaces. Hence
the dynamical systems are chaotic if we can show there actually exists a dense orbit. The same holds for
the Cantor map, although we did not actually show that the periodic points are dense. However, showing
directly that there exists a dense orbit is not easy. We will instead construct a bit more machinery, and show
that these maps possess some stronger properties that transitivity. In this way, we can study the maps in
more detail, and gain some additional insight into the structure of these dynamical systems. To start:

Proposition 2. Let X be a complete separable metric space with no isolated points. Then the following are
equivalent:

(1) f has a dense orbit and is topologically transitive,
(2) f has a dense positive semiorbit,
(3) if U, V ⊂ X are open and nonempty, ∃N ∈ Z such that fN (U) ∩ V 6= ∅,
(4) if U, V ⊂ X are open and nonempty, ∃N ∈ N such that fN (U) ∩ V 6= ∅.
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Remark 3. Recall that a metric space is complete is all Cauchy sequences converge. And X is separable is
there exists a countable dense subset. These properties, along with the “no isolated points” condition, are
technical in nature and while necessary, should not keep you from well understanding how this proposition
works on the nice spaces we are used to. So don’t worry too much at this point about these technicalities.

Proof. Obviously 4 ⇒ 3 and 2 ⇒ 1. If we can show that 3 ⇒ 2 and 1 ⇒ 4, we would be done. We will not
do this, however. The real point of this exposition is to understand the relationship between 1 and 3. To
this end, we will prove the statement 1 ⇒ 3.

Let f be topologically transitive, with a dense orbit given by Ox, x ∈ X. Then for any choice of nonempty,
open sets U, V ⊂ X, ∃n,m ∈ Z such that fn(x) ∈ U , and fm(x) ∈ V . If we suppose for a minute that
m > n, then we would get that fm−n(U) ∩ V 6= ∅. In the case that f is invertible, this makes sense, since
f−n(U) would be a neighborhood of x, and then fm(f−n(U)) ∩ V would be a neighborhood of fm(x) by
continuity. However, this works even in the case where f is not invertible. Simply think of f−n(U) as being
the inverse (set theoretic) image of U (the set of all things that go to U under fn). See the picture. ¤

Corollary 4. A continuous, open map f of a complete metric space is topologically transitive iff there does
not exist two disjoint, open f -invariant sets.

It will help in understanding this last statement to understand the notion of an open map. we will get tot
hat in a minute. However, the idea in the previous Proposition is that finding a dense orbit is equivalent to
the notion that the orbit of ANY open set in X must eventually intersect any other open set in X actually
provides a method of discovery for dense orbits. A set V ⊂ X is f -invariant, if f(V ) ⊂ V . Now assume that
you have such a set V which is open. Now take any other open set U . Whether it is invariant or not, its
entire orbit OU is a union of all of its images and is hence open in X. The Corollary says that if the map is
topologically transitive, then OU must intersect V . Put this way, the two notions look very much alike.

To better get some of these ideas, lets go over a bit of topologically:

Definition 5. A topology on a set X is a well-defined notion what constitutes an open subset of X.

What well-defined means is: A topology on X is a collection TX of subsets of X that satisfy

• ∅ and X are in TX ,
• the union of the elements of any subcollection of TX is in TX , and
• the intersection of the elements in any finite subcollection of TX is in TX .

For a topology TX on X, the elements of TX are called open. Also, any set that is given a topology, is
called a topological space.

Example 6. The set of all open intervals (a, b) ⊂ R constitutes a topology on R, called the standard topology
TR, for −∞ ≤ a ≤ b ≤ ∞. It should be obvious that this allows all of R to be in TR, and if we let a = b, then
the element (b, b) = ∅ is also in TR. The union of any collection of open intervals is certainly open also. Now,
without the last condition, however, we would have a problem: Suppose we allowed that the intersection of
any subcollection of TR to be in TR. Then the set

∞⋂
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)
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would have to be open. But then all individual points would also be open, and thus by the middle constraint,
any subset of X would be open! You can see why the third provision is necessary. Incidentally, there is a
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topology on R (or any other set), where each of the points is considered open. It is called the trivial topology
on the set, and although it works via the definitions, it does not describe well the actual set as a space.

Some facts:

Definition 7. For f : X → Y a (not necessarily continuous) map between two topological spaces, f is
continuous if whenever V ⊂ Y is open (an element of its topology TY ), then f−1(V ) ⊂ X is open (an
element of TX).

This allows us to talk about maps being continuous between arbitrary topological spaces, in a way that is
entirely compatible with what you already learned as the definition of continuity between spaces like subsets
of R in Calculus I, or subsets of Rn in Calculus III. Then, we simply assumed the standard topologies on
Euclidean space, and the notions of “nearness” which is at the center of continuity comes out of the little
ε-balls used to define continuity.

Definition 8. f : X → Y is called an open map, if it is continuous and if whenever U ⊂ X is open, then
f(U) ⊂ Y is open also.

While continuity is common among maps, “openness” is not, and is kind of a special property. When the
map f has a continuous inverse, then f is open. But this is not that common a property.

Now, we know expanding maps of S1 and hyperbolic automorphisms of T2 look messy dynamically. The
question is: How messy are they?

Definition 9. A continuous map f : X → X is said to be topologically mixing if, for any two nonempty,
open set U, V ⊂ X, ∃N ∈ N, such that fn(U) ∩ V 6= ∅, ∀n > N .

Notes:

• Do you see how much stronger (more restricting) this is to topological transitivity? For instance,
(topologically mixing)⇒(topologically transitive), but not vice-versa. To see why, think of the irra-
tional rotations of the circle. The orbit of a small open interval will eventually intersect any other
small open interval. But, depending on the rotation, will most likely leave again for a while before
returning. This is not mixing!

• Actually, the problem with irrational circle rotations is a bit deeper; they are isometries:

Lemma 10. Isometries are not topologically mixing.

Proof. Under an isometry, the diameter of a set U ⊂ X, diam(U) is preserved. Let U = Bδ(x) ⊂ X
be a small δ-ball about a point x ∈ X. Here diam(U) = 2δ and ∀n ∈ N, diam(fn(U)) = 2δ. Now
choose v1, v2 ⊂ X, such that the distance between V1 and V2 is greater than 4δ (this is the minimal
distance between any two points, one in each set). If we assume that the isometry f : X → X is top.
mixing, then there will be a k ∈ N, such that both fn(U) ∩ V1 6= ∅, and fn(U) ∩ V2 6= ∅. ∀n > k.
But this is impossible since V1 and V2 are too far apart to both have nonempty intersection with an
iterate of U . hence f cannot be mixing. ¤

Proposition 11. Expanding maps on S1 are topologically mixing.

Proof. for now, suppose that the expanding map is C1. Differentiable expanding maps have the property
that for f : S1 → S1, |f ′(x)| ≥ λ > 1, ∀x ∈ S1. Let F : R → R be a lift. it is an exercise to show that
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the lift also shares the derivative property, |F ′(x)| ≥ λ, ∀x ∈ R. So choose a small closed interval [a, b] ⊂ R,
where b > a. Then, by the Mean Value Theorem, ∃c ∈ (a, b), such that

|F (b)− F (a)| = |F ′(c)||b− a| ≥ λ(b− a).

Hence, the length of the iterate of the interval is greater by a factor of λ than the interval. This continues
at each iterate of F , so that ∃n ∈ N, such that ||Fn ([a, b])|| > 1. But then π (Fn ([a, b])) = S1.

Now let U = π ([a, b]) and V be any open set in S1. Then we are done. ¤
Corollary 12. Linear expanding maps of S1 are chaotic.

Next class, we will explore the other two examples in our recent models.


