
110.421 DYNAMICAL SYSTEMS

Spring 2010
Contraction Map Example: Existence and Uniqueness criteria for first-order ODEs

A good example of a contraction mapping and its utility is given by what are called Picard iterations.
Consider the first order IVP

(1) ẏ(t) = f(t, y), y(t0) = y0.

The question of whether Equation 1 has a solution, and when it has a solution, if it is uniquely defined, is
a difficult one in general. However, due to the following theorem, the properties of f(t, y) at and near the
initial point (t0, y0) can ensure that unique solutions exist:

Theorem 1. Suppose f(t, y) and
∂f

∂y
(t, y) are continuous in some rectangle

R =
{

(t, y) ∈ R2 | α < t < β, γ < y < δ

}
,

containing the initial point (t0, y0). Then, in some interval t0−h < t < t0 + h contained in α < t < β, there
is a unique solution y = φ(t) of Equation 1.

To give a good sense of why this is true, let’s start with a definition:

Definition 2. An operator is a function whose domain and range are functions.

A good example of this is the derivative operator
d

dx
which acts on all differentiable functions of one

independent variable, and takes them to other (in this case, at least) continuous functions. Think

d

dx
(x2 + sin x) = 2x + cos x.

There are numerous technical difficulties in defining operators correctly, but for now, simply accept this
general description.

We claim that any possible solution y = φ(t) (if it exists) to Equation 1 must satisfy

(2) φ(t) = y0 +
∫ t

t0

f(s, φ(s)) ds

for all t in some interval containing t0.

Exercise 1. Show that this is true (really, simply differentiate both sides to recover the ODE.)

At this point, existence of a solution to the ODE is assured in the case that f(t, y) is continuous on R, as
the integral will then exist at least on some smaller interval t0 − h < t < t0 + h contained inside α < t < β
(the reason it may not exist all the way out to the edge of R? What if the edge of R is an asymptote in the
t variable?)
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As for uniqueness, suppose f(t, y) is continuous as above, and consider the following operator T , which
take a function ψ to its image Tψ defined by

Tψ = y0 +
∫ t

t0

f(s, ψ(s)) ds.

We can stick in many functions for ψ(t) and the image will be a different function Tψ which is still a function
of t. However, looking back at Equation 2, if we stick in the function φ(t) which solves our IVP, the image
Tφ should be the same as φ. In this case, we call such a function a fixed point of T , since Tφ = φ.

Exercise 2. Find ALL fixed points for the derivative operator
d

dx
on the domain R.

Hence, instead of looking for solutions to the IVP, we can instead look for fixed points of the operator
T , since any fixed point for T will also satisfy Equation 2 and hence solve the IVP. How do we do this?
Fortunately, this operator has an interesting property. First, for T and operator and φ a function, define

Tnφ =

n times︷ ︸︸ ︷
T (T (· · · (T (φ)) · · · )) .

Incidentally, this is called iterating the function T , and the above expression is called the nth iterate of φ
under T .

Theorem 3. Suppose you have a way to measure the distance between two functions f(t) and g(t) and call
this distance dist(f, g). If an operator T satisfies

dist(Tf, Tg) ≤ C · dist(f, g), for some 0 < C < 1,

then there is a single function φ that satisfies Tφ = φ. In addition, this unique fixed point satisfies

φ = lim
n→∞

Tn(g)

for any starting function g(t).

Remark 4. Any operator that satisfies the distance criterion in this theorem is called a C-contraction, and in
essence this theorem is the Contraction Principle, a common tool used in the study of ODEs and Dynamical
Systems. We won’t prove this theorem directly, but we will show by construction in the proof of Theorem 1
below that the operator T is a contraction.

Remark 5. Though not entirely necessary, it does make the proof easier to suppose that both f(t, y) and
∂f
∂y (t, y) are not only continuous on R, but bounded here also. This is because we can always slightly restrict
R at an edge where one of the variables blows up. The proof is true even in this case. However, it is much
easier to see with this restriction. As an example, let f(t, y) = log y. Here, both f and ∂f

∂y = 1
y are continuous

on the rectangle −1 < t < 1, 0 < y < 1. However, neither are bounded here. Create a new rectangle R̃ by
moving the left boundary of R slightly to the right; for a small ε > 0, define R̃ to be −1 < t < 1, ε < y < 1.
Here then both f and ∂f

∂y are continuous and bounded on R̃.

proof of Theorem 1. Under the supposition that f and ∂f
∂y are bounded on R, call

M = max
R

∣∣∣∣
∂f

∂y
(t, y)

∣∣∣∣ ,
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and choose a small number h = C
M , where C < 1. Then define a distance within the set of continuous

functions on the closed interval I = [t0 − h, t0 + h] by

dist(g, h) = max
t∈I

∣∣∣∣g(t)− h(t)
∣∣∣∣ .

Then we have

dist(Tg, Th) = max
t∈I

∣∣∣∣Tg(t)− Th(t)
∣∣∣∣(3)

= max
t∈I

∣∣∣∣y0 +
∫ t

t0

f(s, g(s)) ds− y0 −
∫ t

t0

f(s, h(s)) ds

∣∣∣∣(4)

= max
t∈I

∣∣∣∣
∫ t

t0

f(s, g(s))− f(s, h(s)) ds

∣∣∣∣(5)

= max
t∈I

∣∣∣∣∣
∫ t

t0

[∫ g(s)

h(s)

∂f

∂y
(s, r) dr

]
ds

∣∣∣∣∣(6)

≤ max
t∈I

∣∣∣∣
∫ t

t0

M |g(s)− h(s)| ds

∣∣∣∣(7)

≤ max
t∈I

∫ t

t0

M · dist(g, h) ds(8)

≤ max
t∈I

{
M · dist(g, h) · |t− t0|

}
(9)

Exercise 3. The justifications of going from Step 5 to Step 6 and from Step 6 to Step 7 are adaptations of
major theorems from Calculus I-II to functions of more than one independent variable. Find what theorems
these are and show that these are valid justifications. Can you see now why the continuity of ∂f

∂y (t, y) is a
necessary hypothesis to the theorem?

Exercise 4. Justify why the remaining steps are true.

Now notice in the last inequality that since I = [t0 − h, t0 + h], we have that

|t− t0| ≤ h =
C

M
.

Hence

dist(Tg, Th) ≤ max
t∈I

{
M · dist(g, h) · |t− t0|

}

≤ M · dist(g, h) · C

M
= C · dist(g, h).

Hence T is a C-contraction and there is a unique fixed point φ (which is a solution to the original IVP)
on the interval I. Here

φ(t) = Tφ(t) = y0 +
∫ t

t0

f(s, φ(s)) ds.

¤

As an application, we can actually use this construction to “solve” an ODE:
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Example 6. Solve the IVP
y′ = 2t(1 + y), y(0) = 0.

Here, f(t, y) = 2t(1 + y), as well as ∂f
∂y (t, y) = 2t are both continuous on the whole plane R2. Hence unique

solutions exist everywhere.

To actually find a solution, start with an initial guess to be

φ0(t) = 0.

Notice that this choice of φ0(t) does not solve the ODE. But since the operator T is a contraction, iterating
will lead us to a solution: Define Tφ0(t) = φ1(t), and similarly, define

φn(t) = Tφn−1(t) =

n times︷ ︸︸ ︷
T (T (· · · (T (φ0(t))) · · · )) .

Here

φ1(t) = Tφ0(t) = y0 +
∫ t

0

2s(1 + φ0(s)) ds =
∫ t

0

2s(1 + 0) ds = t2.

Continuing, we get

φ2(t) = Tφ1(t) = y0 +
∫ t

0

2s(1 + φ1(s)) ds =
∫ t

0

2s(1 + s2) ds = t2 +
1
2
t4,

φ3(t) = Tφ2(t) = y0 +
∫ t

0

2s(1 + φ2(s)) ds =
∫ t

0

2s

(
1 + s2 +

1
2
s4

)
ds = t2 +

1
2
t4 +

1
6
t6,

φ4(t) = Tφ3(t) = y0 +
∫ t

0

2s(1 + φ3(s)) ds =
∫ t

0

2s

(
1 + s2 +

1
2
s4 +

1
6
t6

)
ds = t2 +

1
2
t4 +

1
6
t6 +

1
24

t8.

Exercise 5. Find the pattern and write out a finite series expression for φn(t). Here one can prove by
induction that the pattern you find is the nth iterate function. However, I am more interested in you
“seeing” it right now.

Exercise 6. Find a closed form expression for lim
n→∞

φn(t) and show that it is a solution of the IVP.


