HOMEWORK SET 3. SELECTED SOLUTIONS

DYNAMICAL SYSTEMS (110.421)
PROFESSOR RICHARD BROWN

1. GENERAL INFORMATION

The homework sets are listed here:
http://www.mathematics. jhu.edu/brown/s10/SyllabusS10421.htm

2. SELECTED EXERCISES

Exercise (2.4.6). This is really just basic ODE theory: If an autonomous, first
order ODE & = f(x) has an isolated equilibrium solution at zo, and f’(x¢) < 0,
then the equilibrium solution is a sink. The reasoning goes that for any x < zy but
sufficiently close, the unique solution x(t) passing through = at time-0 will always
have &(t) > 0 for all ¢ > 0, since here f(x) > 0 for x < z( and close by. On the
other side of xg, at least nearby, © = f(z) < 0. Hence solutions that start on this
side of ¢ will decay to xg.

In a more general sense, a system of first order ODEs & = f (Z) which is “nice”
near a fixed point &y has a special quality near that fixed point. This special quality
is that, under certain non-degeneracy conditions, the behavior of solutions on the
original nonlinear system is qualitatively the same as that of the linear system
formed by the first Taylor approximation to the right hand side f at the point &y
(this is the essence of the term local linearization. The term “nice” can be defined
as “f(x) is continuously differentiable in a neighborhood of zg). For a 1 x 1 system,
the original equation can be linearized around z, since f'(z() exists, and as long
as f'(xg) # 0, the solution near xo of the original equation will behave much like
that of the linear equation.

Given that discussion, the linearized equation is

= f'(xo)r = kx, where k < 0.

Solutions to this equation are x(t) = Ce*!, and with k < 0, and all nearby solutions
exponentially decay to 0 exponentially. Thus the original system has the same
property asymptotically at xo. Indeed, this linear system has a linear time-1 map
g: R — R, g(z) = e¥z. This is obviously a eF-contraction since k& < 0. Since
the vector field f(z) is continuously differentiable, the original ODE will be a e*-
contraction asymptotically at xo. Hence, there will assuredly be a small interval
around o where the ODE will remain a contraction. Hence, on this interval, all

solutions will converge exponentially to xq.

Exercise (2.5.3). Suppose the fixed point set Fiz(f) is not connected. Then there
must be a gap between two points in the fixed point set where no other fixed points
reside. Call this gap the open interval (xzg,x1) where xg,21 € Fix(f) v1 — 29 > 0
(assuming z1 > xp) and Yz € (2o, 21), © € Fiz(f).
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f(x) <x between f@>1
X, and x;,
f=1
3:0 é d x;

Then it must be the case that for all z € (xg, 1), either f(z) > z or f(z) < x
(the graph of f either lies completely above the diagonal in the unit square, or
completely below it). Suppose for instance, f(z) < z, for all € (xg,21). By the
Mean Value Theorem, there must exist a point ¢ € (zo,z1) where

F(c) = f(@1) = f(zo) _T1 =% _ 1

T1 — Zo T1 — Zo

However, now consider the interval (¢, x1). Again by the Mean Value Theorem,
there must exist a point d € (¢, z1), where

f(z1) = f(e) s

T —cC T —c¢

f(d) = =1
since here f(c) < ¢. But this is impossible, because by supposition, on all of [0, 1],
we have |f/(z)| < 1. Thus, by contradiction, there can be no gap between the fixed
points xg and z; where the graph of f lies completely below the diagonal.

The proof in the other case, where f(x) > « for all x € (xg,z1) is entirely
symmetric and is left to you.

Exercise (2.5.4). Basically, see the solution to 2.3.2. With the conditions given,
the square of the map (the composite square) will have a derivative such that
0 < (fof)(x)<1. Thus the square of f will be a non-decreasing function which
will have only fixed points and points asymptotic to fixed points. Thus f can have
only fixed and possible period-2 points.

Exercise (EP8). The general solution to this uncoupled system is

) = e
ro+ (1—rg)ez

0(t) = t+06,

2(t) = zpe "

Along the circle given by the two equations » = 1 and z = 0 (remember from
Calculus IIT that the typical 1-dimensional set in R?® requires two equations), the
motion is constant velocity. More precisely, the solution passing through the initial
point & = (rg, 0o, 2)) = (1,0,0) is given by

rt) =1, 0(t)=t, =z(t)=0.
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Since by observation, there are no other cycles near this one (or anywhere else, for
that matter), this is an isolated cycle, with period 2.

Choose the plane passing through the point (1,0, 0), and normal to the motion
along the cycle; the tangent vector to the motion passing through (1,0,0) is the
tangent vector (0,1,0). Note that with cylindrical coordinates, we only view this
plane as a half-plane, to distinguish it from the plane as that described by the
equation § = m. Call this plane Py.

Every orbit that starts in this plane (even the origin) intersects this plane again
at t = 27. Using (r,z) as coordinates on Py, we get a function f : R? — R?
(actually it is a function on the half-plane defined by » > 0 and z, but near the
point (r,z) = (1,0), this will not matter) defined by the condition that (rg,zg) =
(r(0), 2(0)) — (r(27), z(2m)). Thus

Fr,2) = <+<1—> ) |

Notice that the point (1,0) is fixed by f and that f is nonlinear (in r only,
though). However, to understand the qualitative behavior of f near the fixed point
at (1,0), we calculate the derivative map there:

ofr  Ofr e ™ 0
Df0: ( S SR > (10)( 0 e 2 )

or 0z
It is immediate that all of the eigenvalues of the fixed point (1,0) under the map
f are positive and strictly less than 1. Hence this orbit is an attractive orbit and a
limit cycle.

Exercise (EP9). Really, for A outside of the interval [0,4], the range of f as a
real-valued function includes points outside of [0, 1].



