
HOMEWORK SET 2. SELECTED SOLUTIONS

DYNAMICAL SYSTEMS (110.421)
PROFESSOR RICHARD BROWN

1. General Information

The homework sets are listed here:
http://www.mathematics.jhu.edu/brown/courses/s10/SyllabusS10421.htm

2. Selected Exercises

Exercise (2.2.5). There are a number of ways to find the second-order recursion
that defines the population of lemmings. For one, start from the bottom and work
your way up. Consider it this way: Take you census every spring. Then last year’s
summer litter is maturing and the 2 year-olds have just recently died. In year 1,
we have just the one pair, and they are preparing to have young. They will have
4 young and the next winter, none will die. The next spring (year 2), there are
6 now, but the original pair is turning 2 this summer. They all produce, and the
12 new young make the fall population 18. The original 2 die in the winter, and
the next spring (year 3), there are 16. More precisely, let yn = spring population
in year n, bn the summer population 3 months later, and dn the winter deaths 6
months after that. Then it is easy to see that

yn+1 = yn + bn − dn.

However, there are relationships between these variables. For one, every spring pair
produces four young in the summer. Thus

bn =
1
2
yn · 4 = 2yn.

Next, the number of deaths in any winter is precisely the number of births 2 sum-
mers before the previous spring (lemmings die in the winter of their third year).
Thus

dn = bn−2.

Thus, up to now, we get

yn+1 = yn + 2yn − bn−2

= 2yn + (yn − bn−2) .

The last line is written this way because it is also true that the population in
any spring minus the births two years before is precisely the number of births in
the intermediate year, which is precisely twice the spring population of that year.
Indeed,

yn − bn−2 = bn−1 = 2yn−1.

Putting this in for the term in the parentheses, we get

yn+1 = 2yn + 2yn−1
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and we are done.
Notice that the book is incorrect in its solution to this problem. However, the

rest of the problem is fine. Let xn+1 = yn+1
yn

. Recall that for a second order recursive
sequence is asymptotically exponential, with a growth rate given by the limit of the
sequence {xn}. TO find this, notice that

xn+1 =
yn+1

yn
=

2yn − 2yn−1

yn
= 2 + 2

yn−1

yn
= 2 +

2
xn

.

If we let g(x) = 2 + 2
x , then xn+1 = g(xn). This is a contraction on a suitable

interval like I = [2, 4], and all orbits are asymptotic to the fixed point at x = 2+ 2
x ,

which is x2 − 2x− 2 = 0 (notice this similar structure of this last equation and the
recursive y-sequence that defined it). The only root to this in I is x = 1 +

√
3.

One final note here; there are other ways to do this. One is to count lemmings
each year by age. To do this every spring, simply note that every spring only the
0-year olds and the 1-year olds are to be counted, because the two year olds in that
spring are actually 2 3

4 years of age, and have died before getting there. To get the
living lemming counts, just follow the number of births each year. You still have
to work out the recursion formula, but the sequence is simple to calculate.

Exercise (2.2.6). The conditions here stipulate that x is a fixed point with a unit
slope in absolute value and that x is not an inflection point. One case of this is that
the graph of f(x) is tangent to the fixed point line (the line y = x which we call `)
and the concavity of f does not change here (that is, f ′′(x) 6= 0). One conclusion in
this case is that near x (except at x), either the graph of f is completely above ` or
completely below it (draw pictures). Indeed, consider the former. Let U = Bε(x)
be a small neighborhood around x, where ∀y ∈ U , y 6= x, we know f(y) > y. But
then for y > x, we have f(y) > f(x) = x. This says the elements of the orbit of y,
Oy are not moving towards x. Once one realizes that to converge to x, the elements
of Oy would have to jump to the other side of x. But they cannot because then
f(x) would have to dip back below the fixed point line `, creating another fixed
point which Oy would then converge to. The other case is similar.

I leave the case where f ′(x) = −1 to you.

Exercise (2.3.2). Since f : [0, 1] → [0, 1] is non-increasing, for x0, y0 ∈ [0, 1], if
y0 > x0, then f(y0) ≤ f(x0). Rewritten, we have for y0 > x0, f(y0) = y1 ≤ x1 =
f(x0). And since x1 ≥ y1, we get f(x1) = x2 ≤ y2 = f(y1). Put these together to
get

if y0 > x0, then f (f(y0)) ≥ f (f(x0)) .

That is, the map f2 : [0, 1] → [0, 1] is a non-decreasing map. By Proposition 2.3.5,
all x ∈ [0, 1] are either fixed points or asymptotic to fixed points. This automatically
rules out any higher order periodic points for f2 (Why?). Thus, f2 can have only
fixed points, which means that f can periodic points of order at most 2.

Example. Let f(x) = 1− x. Here all points are of order-2 except for x = 1
2 . Also

for g(x) = 1− x2, the end points are of period 2 and the only fixed point is
√

5−1
2 .

What can you say about the dynamics of g(x)?

Exercise (EP5). The model for this function is given in the book: Example 2.2.4
and the function

√
x on [1,∞). In our case, with f(x) = log(x−1)+5 on I = [2,∞),

we need a slight modification. Here, f is increasing on all of I, and differentiable,
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with f ′(x) = 1
x−1 . However, by Proposition 2.2.3, we only know here then that f(x)

is 1-Lipschitz, since f ′(2) = 1. Thus, we cannot say directly that f is a contraction.
To cure this, notice that f(2) = 5 and indeed f(I) = [5,∞). Hence, after one
iteration of f , we can regard f as a map on [5,∞). Here, since f ′(5) = 1

4 , it is
easy to see that f is a 1

4 -contraction (on [5,∞) only, but remains a contraction
throughout I in this case), and hence has a global attractor. This immediately
rules out any periodic points of order higher than 1. To find the only fixed point,
simply solve x = f(x), or take any starting point and iterate. It is approximately
6.74903 using the natural log and 5.66925 using the common log.

Exercise (EP6). Let I = [a, b]. For part a), make the assumption that the invert-
ible map f : I → I is not one-to-one (injective). Then ∃x, y ∈ I such that x 6= y
but f(x) = f(y). Since f(x) is invertible, f−1 is a function. But then

x = f−1 (f(x)) = f−1 (f(y)) = y

is a contradiction. Hence the assumption must be wrong. The other two parts are
constructed similarly.

Exercise (EP7). To answer the first request, take any increasing function f : I =
[0, 1] → I that fixes both endpoints, and you are done. This will correspond to
an injective continuous function on S1. Note the fact that it is increasing allows
that the inverse exists, and the fact that the endpoints are fixed makes the inverse
continuous. For an example, the function f(x) = x2 is a continuous invertible
function on I which induces a continuous, invertible function on S1 (What is an
expression for the inverse?) See the figure:

f(x) = x2

Really, the end point need not be fixed, as long as f(0) = f(1). For a differ-
entiable circle map, the one-sided derivatives of the map f at the endpoints must
agree in addition to the map being continuous. Try f(x) = x3 − 3

2x2 + 3
2 , as in the

next figure:

f(x) = x  -   x  +   x3 23
2

3
2

Here, considered as a function on R, f ′(0) = f ′(1). Finally, since the graph of
f(x) on I need not actually be in I due to the fact that we are identifying the
endpoints of I, it is quite easy to create a differentiable function on the circle that
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comes from a function whose domain is I but whose range is shifted a bit. This leads
to an easy to describe differentiable fixed point free map on the circle f(x) = x+ r,
where r ∈ I, as in the figure:

f(x) = x + r

r

Note that this only works due to the fact the via the identification of the end-
points, one can “wrap” the graph vertically. You will see these kind of graphs again
in circle , cylinder and toral maps later.


