HOMEWORK PROBLEM SET 8: DUE OCTOBER 25, 2019

AS.110.202 CALCULUS III PROFESSOR RICHARD BROWN

The following problem set is based on **Sections 4.2** and **4.3** of the text. Along with the exercises below, please do the following:

- WeBWorK: Complete Problem Set 8 on WeBWorK.
- Reading for next week: Read Section 4.4, 5.1, 5.2, and 5.3.

For practice (neither to be handed in nor graded), here is a set of selected textbook problems:

- Section 4.2: 5,8,10,14
- Section 4.3: 9,10,13,16,19,21,22

The two following exercises are to be handed in for grade in lecture on the due date above:

- **Exercise 1.** Consider a C^1 -path $\mathbf{c} \colon [a, b] \to \mathbb{R}^3$. Create a new parameterization for this path in the following way: Given a C^1 -function $\alpha \colon [a, b] \to [a_0, b_0]$ that is strictly increasing, one-to-one, and onto. This means that for each $s \in [a_0, b_0]$, there is a unique $t \in [a, b]$ so that $\alpha(t) = s$. Define a new C^1 -path $\mathbf{d} \colon [a_0, b_0] \to \mathbb{R}^3$ by the formula $\mathbf{d}(s) = \mathbf{d}(\alpha(t)) = \mathbf{c}(t)$. So the original curve \mathbf{c} is equal to the composition $(\mathbf{d} \circ \alpha)$. Do the following:
 - (a) Argue that the image curves of c and d are the same.
 - (b) Use the chain rule to express the velocity vector for **c** at time *t* in terms of the velocity vector for **d**.
 - (c) Show that c and d have the same arc length.
 - (d) Define $\alpha(t) = \int_{a}^{t} ||\mathbf{c}'(\tau)|| d\tau$ and define **d** as above by $\mathbf{d}(s) = \mathbf{c}(t)$ for the unique t so that $\alpha(t) = s$. Show that $||\mathbf{d}'(s)|| = 1$ for all s. Note that a path $\mathbf{c}: [a, b] \to \mathbb{R}^3$ is parameterized by arc length if $||\mathbf{c}'(t)|| = 1$ for all t. So the path **d** defined in **part(c)** is a path parameterized by arc length. We also say here that the new path **d** is a **reparameterization** of **c**.

(curves, arc-length, parameterizations, arc-length parameter)

Exercise 2. Let $\mathbf{c}(t)$ be a flow line of a gradient field $\mathbf{F} = -\nabla V$, for $V \colon \mathbb{R}^n \to \mathbb{R}$ a C^1 potential function. Prove that V, evaluated along \mathbf{c} is a decreasing function of t.
(vector fields, gradient field, integral curve (flow line), potentials)