HOMEWORK PROBLEM SET 4: DUE SEPTEMBER 27, 2019

AS.110.202 CALCULUS III PROFESSOR RICHARD BROWN

The following problem set is based on Sections 2.3, 2.4, and 2.5 of the text. Along with the exercises below, please do the following:

- WeBWorK: Complete Problem Set 4 on WeBWorK.
- Reading for next week: Reread Section 2.5, and read 2.6, 3.1 and 3.2.

For practice (neither to be handed in nor graded), here is a set of selected textbook problems:

- Section 2.3: 3acde,5,9,13,14,19,21,26
- Section 2.4: 2,4,6,12,13,15,18,21,24,25
- Section 2.5: 3a,5,6,8,9,10,11,18,32,35,36

The three following exercises are to be handed in for grade in lecture on the due date above:

Exercise 1. Do the following:

- (a) Write a statement defining the Chain Rule for the functions $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^p$. Then describe how it works in a paragraph, assuming the reader is a classmate who has been following the course but missed the lecture on Properties of the Derivative.
- (b) Explain in detail how the Chain Rule you learned in Calculus I,

$$(f \circ g)'(x) = f(g(x)) \cdot g'(x),$$

is really just the special case of your statement in **part** (a) when m = n = p = 1.

(c) Consider a path $\mathbf{c}: [a, b] \to \mathbb{R}^n$ and a differentiable function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$. Assume that for every a < t < b, $\mathbf{c}'(t) \neq 0$. Use the Chain Rule to find a vector that is tangent to the curve parameterized by the composite path $(\mathbf{f} \circ \mathbf{c}): [a, b] \to \mathbb{R}^m$ at the point $\mathbf{f}(\mathbf{c}(t_0))$, for $t_0 \in (a, b)$.

(definitions, derivatives, viewpoint)

Exercise 2. Let
$$f: \mathbb{R}^n \to \mathbb{R}$$
 be a real-valued function on \mathbb{R}^n , and $\mathbf{x}_0 = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$ a

point.

(a) If f is differentiable at \mathbf{x}_0 , explain what it means to say that the function $z = h(\mathbf{x})$, where

$$h(\mathbf{x}) = f(\mathbf{x}_0) + Df(\mathbf{x}_0) \left(\mathbf{x} - \mathbf{x}_0\right)$$

is the best linear function to approximate f at \mathbf{x}_0 .

- (b) Suppose f is differentiable at the point $\mathbf{x} = \mathbf{x}_1$, and $Df(\mathbf{x}_1) = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix}$, the **0**-matrix. Describe what may be happening to $\mathbf{graph}(f)$ at or near $\mathbf{x} = \mathbf{x}_1$.
- (c) Suppose f is not differentiable at $\mathbf{x} = \mathbf{x}_2$. At this point, all of the partial derivatives exist and are continuous as functions, except for one: In the *i*th coordinate direction, we found

$$\frac{\partial f}{\partial x_i}(\mathbf{x}_2) = \lim_{h \to 0} \frac{f(\mathbf{x}_2 + \mathbf{e}_i h) - f(\mathbf{x}_2)}{h} = \infty.$$

Describe what may be happening to $\operatorname{graph}(f)$ at or near $\mathbf{x} = \mathbf{x}_2$. (differentiability, linear approximation, shape of graphs)

Exercise 3. The Product Rule, on page 125 of the text, is only defined for real-valued functions $f, g: U \subset \mathbb{R}^n \to \mathbb{R}$ since the product is the scalar product $f(\mathbf{x})g(\mathbf{x})$. However, when it makes sense, it also works for vector-valued functions. As an example, let $\mathbf{c}: [a, b] \to \mathbb{R}^n$ and $\mathbf{d}: [a, b] \to \mathbb{R}^n$ be two differentiable paths in \mathbb{R}^n , and define the real-valued function $h: [a, b] \to \mathbb{R}$ by $h(t) = \mathbf{c}(t) \cdot \mathbf{d}(t)$ using the Dot Product in \mathbb{R}^n . First, explain why if both \mathbf{c} and \mathbf{d} are differentiable, then so is h. Then, calculate h'(t) in terms of $D\mathbf{c}(t)$ and $D\mathbf{d}(t)$, and show that it satisfies the Product Rule

$$\frac{dh}{dt}(t) = D\mathbf{c}(t) \cdot \mathbf{d}(t) + \mathbf{c}(t) \cdot D\mathbf{d}(t).$$

(derivatives, product rule, differentiability)