HOMEWORK PROBLEM SET 11: DUE NOVEMBER 15, 2019

AS.110.202 CALCULUS III PROFESSOR RICHARD BROWN

The following problem set is based on Sections 7.1, and 7.2 of the text. Along with the exercises below, please do the following:

- WeBWorK: Complete Problem Set 11 on WeBWorK.
- Reading for next week: Read Section 7.3, Section 7.4, Section 7.5, and 7.6.

For practice (neither to be handed in nor graded), here is a set of selected textbook problems:

- Section 7.1: 4,6,9,11a,20,24
- Section 7.2: 1,4d,5,8,11,14,20

The following exercises are to be handed in for grade in lecture on the due date above:

- **Exercise 1.** Suppose $\mathbf{c}_1: [a_1, b_1] \to \mathbb{R}^n$ and $\mathbf{c}_2: [a_2, b_2] \to \mathbb{R}^n$ are two simple \mathbb{R}^n -curves, where $\mathbf{c}_1(a_1) = \mathbf{p} = \mathbf{c}_2(a_2)$, and $\mathbf{c}_1(b_1) = \mathbf{q} = \mathbf{c}_2(b_2)$, but except for the start and finish, the two curves have no points in common. Let $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ be a C^0 -vector field. Do the following:
 - (a) State the definition of a *simple closed curve*, and show that the curve $\mathbf{c} = \mathbf{c}_1 \cup \mathbf{c}_2$ is a simple closed curve.
 - (b) Write down a piecewise-defined parameterization for the curve \mathbf{c} in the following way: First travel along \mathbf{c}_1 and then travel along \mathbf{c}_2 in the opposite direction.
 - (c) Show that the two integrals

$$\int_{\mathbf{c}_1} \mathbf{F} \cdot d\mathbf{s}, \text{ and } \int_{\mathbf{c}_2} \mathbf{F} \cdot d\mathbf{s}$$

are equal if and only if $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = 0.$

(Vector line integrals, vector fields, curves, simple closed curves, definitions)

Exercise 2. Let **G** be a C^0 -vector field on \mathbb{R}^n and $\mathbf{d}: [a, b] \to \mathbb{R}^n$ a curve. Show the following:

(a) If G is perpendicular to the curve at every point, then the vector line integral of G along d is 0. That is,

$$\int_{\mathbf{d}} \mathbf{G} \cdot d\mathbf{s} = 0.$$

Note: We say here that **G** does no work on a particle moving along the curve.

(b) If G is parallel to the curve at every point, then the vector line integral of G along d equals the scalar line integral of the norm of the vector field along d.

That is,

$$\int_{\mathbf{d}} \mathbf{G} \cdot d\mathbf{s} = \int_{\mathbf{d}} ||\mathbf{G}|| \, ds.$$

Note: A vector field **G** is parallel to a curve **d** if $\mathbf{G}(\mathbf{d}(t)) = \lambda(t)\mathbf{d}'(t)$ all along the curve, where $\lambda(t)$ is some real-valued, positive function $\lambda: [a, b] \to \mathbb{R}$. (scalar line integral, vector line integral, curves, vector fields)