
Calculus III Solutions. Week 7, 3.4.6 and 3.4.17. Benjamin Diamond. 

3.4.6 In exercises 3 to 7, find the extrema of f subject to the stated constraints. 

       6. 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧, subject to 𝑥2 − 𝑦2 = 1, 2𝑥 + 𝑧 = 1 

We use the content of the section Several Constraints (page 191), which states: 

If a surface S is defined by a number of constraints, namely, 

𝑔1(𝑥1, … , 𝑥𝑛) = 𝑐1
𝑔2(𝑥1, … , 𝑥𝑛) = 𝑐2

⋮
𝑔𝑘(𝑥1, … , 𝑥𝑛) = 𝑐𝑛

} , 

then the Lagrange multiplier theorem may be generalized as follows: If f has a maximum or 

minimum at 𝒙0 on S, there must exist constants 𝜆1, … , 𝜆𝑘 such that 

∇𝑓(𝒙0) = 𝜆1∇𝑔1(𝒙0) + ⋯+ 𝜆𝑘∇𝑔𝑘(𝒙0) 

This presents an interesting extension to the standard Lagrange procedure. Given any particular 

constraint 𝑔𝑖, the gradient vector ∇𝑔𝑖 points perpendicularly to the “surface” described by 

𝑔𝑖(𝑥1, … , 𝑥𝑛) = 𝑐𝑖. Now, the multiple constraints 𝑔1, … , 𝑔𝑘, describe a set consisting of the 

interesction of each of the individual surfaces 𝑔𝑖 = 𝑐𝑖, and their gradient vectors ∇𝑔1, … , ∇𝑔𝑘 

(assuming that they’re linearly independent (what if they aren’t?)) all point perpendicularly to this 

resulting intersection surface, S. Their linear combinations form a linear subspace, and we might 

understand this space as the “orthogonal space” to S at any given point 𝒙0. The extended 

Lagrange procedure, then, commands us to find an 𝒙0 in S such that 𝒙0’s gradient ∇𝑓(𝒙0) lies in 

the constraint set S’s orthogonal space. Such an 𝒙0, of course, will be an extremum on S. 

Applying the above statement to our particular case, we see that we must find 𝒙0 = (𝑥, 𝑦, 𝑧) such 

that, for some constants 𝜆1, 𝜆2, we have 

∇𝑓(𝑥, 𝑦, 𝑧) = 𝜆1∇𝑔1(𝑥, 𝑦, 𝑧) + 𝜆2∇𝑔𝑘(𝑥, 𝑦, 𝑧) 

𝑔1(𝑥, 𝑦, 𝑧) = 𝑐1, 𝑔2(𝑥, 𝑦, 𝑧) = 𝑐2 

or in particular, 

[
1
1
1
] = 𝜆1 [

2𝑥
−2𝑦
0
] + 𝜆2 [

2
0
1
] 

𝑥2 − 𝑦2 = 1, 2𝑥 + 𝑧 = 1 

which we can also write as 

1 = 𝜆1 ∙ 2𝑥 + 𝜆2 ∙ 2
1 = 𝜆1 ∙ −2𝑦
1 = 𝜆2

𝑥2 − 𝑦2 = 1, 2𝑥 + 𝑧 = 1

} 



The third equation gives 𝜆2 = 1. Substituting this into the first equation, we get 1 = 𝜆1 ∙ 2𝑥 + 1 ∙

2 → 𝜆1 ∙ 2𝑥 = −1, while the second equation gives 𝜆1 ∙ −2𝑦 = 1. Therefore 𝜆1 = −
1

2𝑥
= −

1

2𝑦
→

𝑥 = 𝑦. However, the constraint 𝑥2 − 𝑦2 = 1 is never satisfied: there are no points (𝑘, 𝑘), for 

some number 𝑘, such that (𝑘)2 − (𝑘)2 = 0 = 1. Therefore, f has no extrema subject to the given 

constraints. 

This makes sense. The constraint 𝑥2 − 𝑦2 = 1 describes a hyperbola which asymptotically 

approaches the diagonal lines 𝑥 − 𝑦 = 0 and 𝑥 + 𝑦 = 0. As this set marches upward and to the 

right within the xy-plane, for example, the value of f will keep climbing indefinitely. Meanwhile, 

as it marches upwards and to the left, the value of f will get more and more negative. This 

phenomenon is homogeneous as one travels along a branch of the hyperbola (say parameterized 

by 𝑡 = 𝑥) and there are no local extrema on the way. Thus, are no extrema in general. 

3.4.17 Find the maximum and minimum values attained by 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧 on the unit ball 𝑥2 + 𝑦2 +

𝑧2 ≤ 1. 

Unlike that of the last problem, this constraint set is a compact domain (just wait till you study 

analysis!) so this function will actually attain extrema. Let’s begin. 

We cite the strategy outlined on page 194: 

Lagrange Multiplier Strategy for Finding Absolute Maxima and Minima on Regions with 

Boundary Let f be a differentiable function on a closed and bounded region 𝐷 = 𝑈 ∪ 𝛿𝑈,𝑈 open 

in ℝ𝑛, with smooth boundary 𝛿𝑈. 

To find the absolute maximum and minimum of f on D: 

(i) Locate all critical points of f in U. 

(ii) Use the method of Lagrange multiplier to locate all the critical points of 𝑓|𝛿𝑈. 

(iii) Compute the values of f at these critical points. 

(iv) Select the largest and smallest. 

We carry out the procedure. 

First, we find the critical points of f in U. ∇𝑓 = 0 gives 

[

𝑦𝑧
𝑥𝑧
𝑥𝑦
] = [

0
0
0
] ↔

𝑦𝑧 = 0
𝑥𝑧 = 0
𝑥𝑦 = 0

} ↔
𝑦 = 0 OR 𝑧 = 0
𝑥 = 0 OR 𝑧 = 0
𝑥 = 0 OR 𝑦 = 0

} 

A bit of mental Boolean algebra tells us that the three equations on the right hold if and only if at 

least two out of three of 𝑥, 𝑦, 𝑧 are equal to zero. So, we have critical points in U of the form 

(𝑥, 0,0),−1 < 𝑥 < 1; (0, 𝑦, 0), −1 < 𝑦 < 1, (0,0, 𝑧), −1 < 𝑧 < 1. We’ll set these aside for now 

and move on to the boundary. 

Using the standard one-constraint Lagrange method on the boundary 𝑥2 + 𝑦2 + 𝑧2 = 1, we get: 



[

𝑦𝑧
𝑥𝑧
𝑥𝑦
] = 𝜆 [

2𝑥
2𝑦
2𝑧
] , 𝑥2 + 𝑦2 + 𝑧2 = 1 ↔

𝑦𝑧 = 𝜆 ∙ 2𝑥
𝑥𝑧 = 𝜆 ∙ 2𝑦
𝑥𝑦 = 𝜆 ∙ 2𝑧

𝑥2 + 𝑦2 + 𝑧2 = 1}
 

 
 

This gives 𝜆 =
𝑦𝑧

2𝑥
=

𝑥𝑧

2𝑦
=

𝑥𝑦

2𝑧
. Cross-multiplying all possible pairs of equalities among the right-

most three quantities, we get three expressions, 𝑥2 = 𝑦2, 𝑦2 = 𝑧2, 𝑥2 = 𝑧2, and transitivity gives 

𝑥2 = 𝑦2 = 𝑧2. This equation is satisfied on the unit sphere only on those points (±𝑘,±𝑘,±𝑘) 

such that (±𝑘)2 + (±𝑘)2 + (±𝑘)2 = 1 ↔ 3𝑘2 = 1 ↔ 𝑘 =
1

√3
. Therefore, we get 8 critical points 

on the sphere: (±
1

√3
, ±

1

√3
, ±

1

√3
). 

Now, we’ve assembled all of our critical points, and we compute their values. 

𝑓(𝑥, 0,0) = 0, for all − 1 < 𝑥 < 1

𝑓(0, 𝑦, 0) = 0, for all − 1 < 𝑦 < 1

𝑓(0,0, 𝑧) = 0, for all − 1 < 𝑧 < 1

𝑓 (±
1

√3
,±

1

√3
,±

1

√3
) =

{
 

 
1

3√3
 if the number of positives is even

−
1

3√3
 if the number of positives is odd

}
 
 
 

 
 
 

 

The critical points on the interior U all attain value zero, which is neither an absolute minimum 

nor an absolute maximum, so we can disregard them. The eight remaining critical points each 

achieve absolute maxima or minima, ±
1

3√3
, respectively. 

Whether the individual critical points are themselves absolute maxima or minima depends on the 

signs of their components. Critical points with an even number of positive components – 

(
1

√3
,
1

√3
,
1

√3
 ) , (

1

√3
, −

1

√3
, −

1

√3
) , (−

1

√3
,
1

√3
, −

1

√3
) , (−

1

√3
, −

1

√3
,
1

√3
 ) – attain the absolute maximum 

value, 
1

3√3
. Critical points with an odd number of positive components 

(−
1

√3
, −

1

√3
, −

1

√3
, ) , (−

1

√3
,
1

√3
,
1

√3
) , (

1

√3
, −

1

√3
,
1

√3
) , (

1

√3
,
1

√3
, −

1

√3
) – attain the absolute minimum 

value, −
1

3√3
. 


