Calculus 11l Solutions. Week 7, 3.4.6 and 3.4.17. Benjamin Diamond.

3.4.6

6.

In exercises 3 to 7, find the extrema of f subject to the stated constraints.
f(x,y,z) =x+y+zsubjecttox? —y?>=1,2x+z=1

We use the content of the section Several Constraints (page 191), which states:
If a surface S is defined by a number of constraints, namely,

g1(X1, ., xp) = ¢4
g2(x1, ., xp) =3

)
gk(xb ---!xn) =Cn

then the Lagrange multiplier theorem may be generalized as follows: If f has a maximum or
minimum at x, on S, there must exist constants A4, ..., A such that

Vf(xo) = 41V g1(x0) + -+ + 4 Vg (xo)

This presents an interesting extension to the standard Lagrange procedure. Given any particular
constraint g;, the gradient vector Vg; points perpendicularly to the “surface” described by
gi(xq, ..., xy) = c;. Now, the multiple constraints gy, ..., gx, describe a set consisting of the
interesction of each of the individual surfaces g; = c;, and their gradient vectors Vg, ..., Vg
(assuming that they’re linearly independent (what if they aren’t?)) all point perpendicularly to this
resulting intersection surface, S. Their linear combinations form a linear subspace, and we might
understand this space as the “orthogonal space” to S at any given point x,. The extended
Lagrange procedure, then, commands us to find an x, in S such that x,’s gradient Vf(x,) lies in
the constraint set §’s orthogonal space. Such an x, of course, will be an extremum on S.

Applying the above statement to our particular case, we see that we must find x, = (x,y, z) such
that, for some constants 4, 4,, we have

Vf(ny'Z) = Alv‘ql(x'yfz) +12ng(x'y' Z)

91(x,y,2) = c1,8:(%,y,2) = ¢,

1 2x 2
1 0 1

x2—y2=12x+z=1

or in particular,

+ 1,

which we can also write as

1=, 2x+ 1y 2
1=21,--2y
1=12,
x2—y?=12x+z=1



3.4.17

The third equation gives A, = 1. Substituting this into the first equation, weget1 =1, - 2x + 1-

1 1

2 = A4 2x = —1, while the second equation gives A; - —2y = 1. Therefore ; = EEriainb

x = y. However, the constraint x? — yz = 1 is never satisfied: there are no points (k, k), for
some number k, such that (k)? — (k)2 = 0 = 1. Therefore, f has no extrema subject to the given
constraints.

This makes sense. The constraint x2 —y2 = 1 describes a hyperbola which asymptotically
approaches the diagonal lines x —y = 0 and x + y = 0. As this set marches upward and to the
right within the xy-plane, for example, the value of f will keep climbing indefinitely. Meanwhile,
as it marches upwards and to the left, the value of f will get more and more negative. This
phenomenon is homogeneous as one travels along a branch of the hyperbola (say parameterized
by t = x) and there are no local extrema on the way. Thus, are no extrema in general.

Find the maximum and minimum values attained by f(x,v,z) = xyz on the unit ball x? + y? +
2
z¢ < 1.

Unlike that of the last problem, this constraint set is a compact domain (just wait till you study
analysis!) so this function will actually attain extrema. Let’s begin.

We cite the strategy outlined on page 194:

Lagrange Multiplier Strategy for Finding Absolute Maxima and Minima on Regions with
Boundary Let f be a differentiable function on a closed and bounded region D = U U 6U, U open
in R™, with smooth boundary 6U.

To find the absolute maximum and minimum of f on D:

(i) Locate all critical points of fin U.

(ii) Use the method of Lagrange multiplier to locate all the critical points of f|6U.
(iii) Compute the values of f at these critical points.

(iv) Select the largest and smallest.

We carry out the procedure.

First, we find the critical points of fin U. Vf = 0 gives

vz 0 yz=20 y=00Rz=0
[xz =10 <—>xz=0}<—>x=OORz=0}
xy 0 xy=0 x=00Ry=0

A bit of mental Boolean algebra tells us that the three equations on the right hold if and only if at
least two out of three of x,y, z are equal to zero. So, we have critical points in U of the form
(x,0,0),-1<x<1;(0,y,0),-1<y<1,(000,2),—-1 < z < 1. We'll set these aside for now
and move on to the boundary.

Using the standard one-constraint Lagrange method on the boundary x% + y2 + z? = 1, we get:



yzZ =A-2x

yz 2x
xz=A1-2
[xz B Fod R xy=/1-2)zl }
X
Y 2z xZ+y2+z2=1
yz _ xz

= 2y = % Cross-multiplying all possible pairs of equalities among the right-
most three quantities, we get three expressions, x? = y2,y2 = z2,x? = z2, and transitivity gives
x% = y? = z2. This equation is satisfied on the unit sphere only on those points (+k, +k, +k)

suchthat (k)2 + (£k)?> + (2k)’ =1 3k?’=1ok = % Therefore, we get 8 critical points

This gives 1 =

on the sphere: (i \/%, i%. i%)

Now, we’ve assembled all of our critical points, and we compute their values.

f(x,0,0) =0,forall -1 <x<1
f(@0,y,0) =0,forall—-1<y<1
f(0,0,z) =0,forall—-1<z<1

1
1 1 1 7 if the number of positives is even (
fltrmtmtr)={ 33
V3 T3 V3 L
\"3v3

The critical points on the interior U all attain value zero, which is neither an absolute minimum
nor an absolute maximum, so we can disregard them. The eight remaining critical points each

if the number of positives is odd}

achieve absolute maxima or minima, +

1 .
5 respectively.

Whether the individual critical points are themselves absolute maxima or minima depends on the
signs of their components. Critical points with an even number of positive components —

1 1 1 1 1 1 1 1 1 1 1 1 . .
(ﬁ'ﬁ’\/_i ) , (\/_i’ — 5 ﬁ) , (—\/—5,\/—5, - \/—5) , (— NG ) — attain the absolute maximum
value, % Critical points with an odd number of positive components

(—%, —\/%, —%)(—\/—%\/—%\/—%)(% —%%)(\/—15\/—15 —%) — attain the absolute minimum

1
vaIue, —ﬁ.



