problem 3.2.9

Let's first recall that the general formula for the second Taylor expansion of function f(x, y) at point (a, b) is

In this problem, we have $(a,b)=(\pi,\frac{\pi}{2}), f(x,y)=\cos x\sin y$ and so that

$$f(\pi, \frac{\pi}{2}) = -1 \tag{1}$$

$$\nabla f(\pi, \frac{\pi}{2}) = (-\sin(\pi)\sin(\frac{\pi}{2}), \cos(\pi)\cos(\frac{\pi}{2})) = (0, 0)$$
 (2)

$$(\partial_{xx}f)(\pi, \frac{\pi}{2}) = -\cos(\pi)\sin(\frac{\pi}{2}) = 1 \tag{3}$$

$$(\partial_{xy}f)(\pi, \frac{\pi}{2}) = -\sin(\pi)\cos(\frac{\pi}{2}) = 0 \tag{4}$$

$$(\partial_{yy}f)(\pi, \frac{\pi}{2}) = -\cos(\pi)\sin(\frac{\pi}{2}) = 1 \tag{5}$$

By plugging in the above values, the second order Taylor yields

$$-1 + \frac{1}{2}(x - \pi)^2 + \frac{1}{2}(y - \frac{\pi}{2})^2$$

problem 3.3.21

First let's compute the critical points of z we have

$$\nabla f(x,y) = (2xe^{1-x^2-y^2} - 2x(x^2+3y)e^{1-x^2-y^2}, 6ye^{1-x^2-y^2} - 2y(x^2+3y)e^{1-x^2-y^2})$$

so the critical points are obtained by solving the system

$$\begin{cases} 2xe^{1-x^2-y^2} - 2x(x^2+3y)e^{1-x^2-y^2} = 0\\ 6ye^{1-x^2-y^2} - 2y(x^2+3y)e^{1-x^2-y^2} \end{cases}$$

Since exponential functions are always positive, the above system is equivalent to

$$\begin{cases} 2x - 2x(x^2 + 3y) = 0 \\ 6y - 2y(x^2 + 3y) = 0 \end{cases}$$
 which admits 3 pairs of solutions $(0, 1), (1, 0)$ and $(-1, 0)$.

Now let's determine the nature of those critical points, by computing $\partial_{xx} f(0,1) = -4$, $\partial_{xx} f(1,0) = \partial_{xx} f(-1,0) = -12$ as well as $\partial_{xy} f(0,1) = 0$, $\partial_{xy} f(1,0) = -6$, $\partial_{xy} f(-1,0) = 6$, and $\partial_{yy} f(0,1) = -6$, $\partial_{yy} f(1,0) = \partial_{yy} f(-1,0) = 4$, we can compute the discriminate of each critical points,i.e., $D(0,1) = \partial_{xx} f(0,1) \partial_{yy} f(0,1) - \partial_{xy} f(0,1) = 24$, D(1,0) = -84 and D(-1,0) = -84. Therefore, we have immediate conclusion that (1,0) and (-1,0) are saddles, and since $\partial_{xx} f(0,1) = -4 < 0$ and D(0,1) = 24 > 0, one concludes (0,1) is the local max.