1.3.20) given two planes
x+2y+z=0andx—-3y—z=0

There are three possibilities for their intersection, empty [they are parallel], a line or the whole planes
themselves. First step is to find orthogonal [Or normal if their magnitude is 1] vectors to each plane.
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2| is orthogonaltox +2y+z=0and |—3|isothogonaltox —3y—z=0
1 -1

This is the immediate consequence of the equations of those planes. Because these two vectors are not
parallel the planes are not parallel or equal, so their intersection is a line. As you can see in the picture for
two planes with orthogonal vectors N1 and N2 the vector V which is parallel to their intersection line is
also parallel to their cross product, because it should be orthogonal two both of them.
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So we should continue with computing cross product of the vectors that we found.
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2| X |—-3|=det {1 2 1=1+2]-5k
1 1 1 -3 -1

Now we know the vector parallel to the intersection line, for writing the equation for that line only
remaining thing is to find one point [And it’s not important which point] on the intersection line. So we
solve the equations simultaneously.

x+2y+z=x—-3y—z - 2z=-5y,setz=0 - y=0subsituting in the main equation



0

gives us x = 0,so the point | 0 | is on the intersection line.
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1
Therefor we need to write the equation for a line parallel to | 2 | that goes through origin.
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X 0 1
itwillbe |y | = |0| +t|2 |orequvalitnylx =t&y=2t&z= -5t
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