CHALLENGE PROBLEM SET: CHAPTER 2, COURSE WEEK 3

110.202 CALCULUS III PROFESSOR RICHARD BROWN

Question 1. Describe some appropriate level surfaces and sections of the graphs of

(a)
$$f(x,y,z) = 2x^2 + y^2 + z^2$$

(b)
$$f(x, y, z) = x^2$$

(c)
$$f(x, y, z) = xyz$$
.

Question 2. Compute the following limits if they exist: (a) $\lim_{(x,y)\to(0,0)} \frac{e^{xy}-1}{y}$

(a)
$$\lim_{(x,y)\to(0,0)} \frac{e^{xy}-1}{y}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{\cos(xy)-1}{x^2y^2}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2+2}$$

Question 3. Compute the following limits if they exist:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy}$$

(b)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{\sin(xyz)-1}{xyz}$$

(c)
$$\lim_{(x,y,z)\to(0,0,0)} f(x,y,z)$$
, where $f(x,y,z) = \frac{x^2 + 3y^2}{x+1}$

Question 4. Do the following:

- (a) Can $\frac{\sin(x+y)}{x+y}$ be made continuous by suitably defining it at (0,0)?
- (b) Can $\frac{xy}{x^2+y^2}$ be made continuous by suitably defining it at (0,0)?
- (c) Prove that $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto ye^x + \sin x + (xy)^4$ is continuous.

Question 5. Let

$$f(x,y) = \begin{cases} \frac{x^2 y^4}{x^4 + 6x^8} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Show that $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ exist.
- (b) Show that f is not continuous at (0,0) by showing that f is not continuous at (0,0).

1

Question 6. Compute the tangent plane at (1,0) for each of the following functions:

(a)
$$f(x,y) = xe^{(-x^2-y^2)}$$

(b)
$$f(x,y) = \frac{xy}{(x^2 + y^2)}$$

(c)
$$f(y,z) = z^2 \cos y$$
.