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One learns early that there are general formulae for measuring certain quantities inherent
to geometric objects. Things like the area of a triangle or the perimeter of a pentagon can be
derived purely using geometric means. However, calculus also allows for effective calculation,
and, of course, the formulae must agree. Here we calculate the volume of S2

r , a 2-dimensional
sphere of radius r ≥ 0, in three space. Geometrically, it is known that

volume(S2
r ) =

4

3
πr3.

Using calculus, we reestablish this formula.

Exercise. Calculate, using calculus, the volume enclosed by a S2
r ⊂ R3.

Note that where S2
r is located in R3 does not matter, so we simply place it centered at the

origin of the xyz-space R3. We will do this in a number of ways:

The interior of S2
r viewed as an elementary solid region Wr ⊂ R3:

Noting that the r-sphere Sr encloses a solid Wr which is elementary, we can use Example
3 of Section 5.5 directly to write

Wr =

(x, y, z) ∈ R3

∣∣∣∣∣∣∣
−r ≤ x ≤ r,

−
√
r2 − x2 ≤ y ≤

√
r2 − x2 ,

−
√
r2 − x2 − y2 ≤ z ≤

√
r2 − x2 − y2

 .

Then, integrating the function f(x, y, z) = 1 over Wr will yield the volume of Wr. Thus

(1) volume(Wr) =

ˆ r

−r

ˆ √r2−x2
−
√
r2−x2

ˆ √r2−x2−y2

−
√
r2−x2−y2

1 dz dy dx.

The calculation is now to systematically calculate this triple integral by viewing the integral
as a nested integral and integrating from the inside out.
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Firstly, we have

volume(Wr) =

ˆ r

−r

ˆ √r2−x2
−
√
r2−x2

ˆ √r2−x2−y2

−
√
r2−x2−y2

1 dz dy dx

=

ˆ r

−r

ˆ √r2−x2
−
√
r2−x2

(ˆ √r2−x2−y2

−
√
r2−x2−y2

1 dz

)
dy dx

=

ˆ r

−r

ˆ √r2−x2
−
√
r2−x2

z∣∣∣∣
√
r2−x2−y2

−
√
r2−x2−y2

 dy dx

=

ˆ r

−r

ˆ √r2−x2
−
√
r2−x2

2
√
r2 − x2 − y2 dy dx.(2)

Next, we focus on the new “inside” integral, where

volume(Wr) =

ˆ r

−r

ˆ √r2−x2
−
√
r2−x2

2
√
r2 − x2 − y2 dy dx

=

ˆ r

−r

(ˆ √r2−x2
−
√
r2−x2

2
√
r2 − x2 − y2 dy

)
dx.

To make this inside integral easier to work with, we note that the part r2 − x2 is a constant
when integrating only over y. So for a minute, let’s write this constant as a2 = r2 − x2, for
a ≥ 0. (Why is this okay?) Then

ˆ √r2−x2
−
√
r2−x2

2
√
r2 − x2 − y2 dy =

ˆ a

−a
2
√
a2 − y2 dy.

From Calculus I, one way to solve this integral is with the trigonometric substitution y =
a sin t. Then, along with dy = a cos t dt (and the limits: when y = −a, t = −π

2
, and when

y = a, t = π
2

on an injective interval), we have

ˆ a

−a
2
√
a2 − y2 dy =

ˆ π
2

−π
2

2
√
a2 − a2 sin2 t a cos t dt

= 2

ˆ π
2

−π
2

a2 cos2 t dt =

ˆ π
2

−π
2

a2 (1 + cos 2t) dt

= a2
(
t+

1

2
sin 2t

) ∣∣∣∣π2
−π

2

= πa2 = π
(
r2 − x2

)
.

Hence

volume(Wr) =

ˆ r

−r

ˆ √r2−x2
−
√
r2−x2

2
√
r2 − x2 − y2 dy dx =

ˆ r

−r
π
(
r2 − x2

)
dx.
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Now to finish, using standard first semester calculus ideas,

volume(Wr) =

ˆ r

−r
π
(
r2 − x2

)
dx = π

(
r2x− x3

3

) ∣∣∣∣r
−r

= π

(
r2r − r3

3
− r2(−r) +

(−r)3

3

)
= π

(
2r3 − 2

3
r3
)

=
4

3
πr3.

The sphere S2
r viewed as the difference between two functions over a

planar domain:

Noting that the r-sphere is defined as

Sr =
{

(x, y, z) ∈ R3
∣∣ x2 + y2 + z2 = r2

}
,

we can write the upper hemisphere as the function z = f(x, y) =
√
r2 − x2 − y2 , and the

lower hemisphere as the function z = g(x, y) = −
√
r2 − x2 − y2 , both of which are defined

and continuous on the domain

Dr =
{

(x, y) ∈ R2
∣∣ x2 + y2 ≤ r2

}
.

Then the solid region between the two functions is enclosed precisely by Sr. The volume of
this region is then

(3) volume(Sr) =

¨
D

(f(x, y)− g(x, y)) dA =

¨
D

2
√
r2 − x2 − y2 dA.

To solve this integral, we note that D is already parameterized by x and y, and that D is
elementary of Type III in the plane. So considering it a Type I region in the plane, we can
write

Dr =

{
(x, y) ∈ R2

∣∣∣∣∣ −r ≤ x ≤ r,

−
√
r2 − x2 ≤ y ≤

√
r2 − x2

}
.

Then the integral becomes

volume(Sr) =

¨
D

2
√
r2 − x2 − y2 dA =

ˆ r

−r

ˆ √r2−x2
−
√
r2−x2

2
√
r2 − x2 − y2 dy dx.

This last expression is precisely the one above in Equation 2. The rest of the calculation
follows, as above, from there.

Changing variables to spherical coordinates in R3

Another way to calculate volume is to switch coordinate systems in R3 form the rectilinear
(x, y, z) to the spherical (ρ, θ, ϕ). One reason for this is that, in spherical coordinates, the
sphere S2

r and its interior (that is, the space Wr) is just a cuboid (a 3-dimensional version
of a rectangle). Indeed, consider the set of transformations

T (ρ, θ, ϕ) = (x(ρ, θ, ϕ), y(ρ, θ, ϕ), z(ρ, θ, ϕ))

= (ρ cos θ sinϕ, ρ sin θ sinϕ, ρ cosϕ) ,

which takes the cuboid
W∗r = [0, r]× [0, 2π]× [0, π]

to Wr, as seen in Figure 1 below.
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Figure 1. The transformation from rectilinear coordinates to spherical coordinates.

We can integrate in this new coordinate system as long as we follow the Change of Variables
Theorem and include the absolute value of the Jacobian determinant of the transformation,
so

˚
Wr

dx dy dz =

˚
W∗
r

∣∣∣∣∂(x, y, z)

∂(ρ, θ, ϕ)

∣∣∣∣ dρ dθ dϕ.
One first step in this process is to calculate the Jacobian (determinant of the transformation):

∂(x, y, z)

∂(ρ, θ, ϕ)
=

∣∣∣∣∣∣∣∣
∂x
∂ρ

∂x
∂θ

∂x
∂ϕ

∂y
∂ρ

∂y
∂θ

∂y
∂ϕ

∂z
∂ρ

∂z
∂θ

∂z
∂ϕ

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
cos θ sinϕ −ρ sin θ sinϕ ρ cos θ cosϕ

sin θ sinϕ ρ cos θ sinϕ ρ sin θ cosϕ

cosϕ 0 −ρ sinϕ

∣∣∣∣∣∣∣
= cosϕ

∣∣∣∣∣ −ρ sin θ sinϕ ρ cos θ cosϕ

ρ cos θ sinϕ ρ sin θ cosϕ

∣∣∣∣∣+ (−ρ sinϕ)

∣∣∣∣∣ cos θ sinϕ −ρ sin θ sinϕ

sin θ sinϕ ρ cos θ sinϕ

∣∣∣∣∣
= −ρ2 cos2 ϕ

(
sin2 θ sinϕ+ cos2 θ sinϕ

)
− ρ2 sin2 ϕ

(
cos2 θ sinϕ+ sin2 θ sinϕ

)
= −ρ2

(
sin2 θ sinϕ+ cos2 θ sinϕ

)
= −ρ2 sinϕ.

At this point, then, we can also realize that ρ ∈ [0, r] is nonnegative, and on the interval
ϕ ∈ [0, π], so is sinϕ. Hence

∣∣∣∣∂(x, y, z)

∂(ρ, θ, ϕ)

∣∣∣∣ =
∣∣−ρ2 sinϕ

∣∣ = ρ2 sinϕ.
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Thus

volume (Wr) =

˚
Wr

dx dy dz =

˚
W∗
r

∣∣∣∣∂(x, y, z)

∂(ρ, θ, ϕ)

∣∣∣∣ dρ dθ dϕ
=

ˆ r

0

ˆ π

0

ˆ 2π

0

ρ2 sinϕdθ dϕ dρ

=

ˆ r

0

ˆ π

0

(
θρ2 sinϕ

∣∣∣∣2π
0

)
dϕ dρ = 2π

ˆ r

0

ˆ π

0

ρ2 sinϕdϕdρ

= 2π

ˆ r

0

(
−ρ2 cosϕ

∣∣∣∣π
0

)
dρ = 2π

ˆ r

0

(
−ρ2 cos π + ρ2 cos 0

)
dρ

= 4π

ˆ r

0

ρ2 dρ = 4π

(
ρ3

3

∣∣∣∣r
0

)
=

4

3
πr2,

as before.


