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Problem. Solve the Ordinary Differential Equation
dy

dx
=

x2

1− y2
.

Strategy. Solving the ODE means finding the general solution (the 1-parameter
family of solutions). We first note that it is a separable differential equation.
But also, it is exact. We will solve this problem both ways.

Solution. This ODE is separable since the right-hand-side can be written as
a product of two functions, one solely a function of the independent variable
x and the other of the dependent variable y. Here, we can write

dy

dx
=

x2

1− y2
= x2

(
1

1− y2

)
.

We can separate the variables by dividing the entire equation by the function
of the dependent variable:

(1− y2)

[
dy

dx
= x2

(
1

1− y2

)]
(1− y2)

dy

dx
= x2.

Now we can integrate both sides with respect to x∫
(1− y2)

dy

dx
dx =

∫
(1− y2) dy =

∫
x2 dx

y − y3

3
=

x3

3
+ C.

This is the implicit solution to the ODE.
This ODE is also exact. To see this, rewrite the equation in the general

form M(x, y) + N(x, y)dydx = 0. Here,

−x2 + (1− y2)
dy

dx
= 0.
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Recall in the book that a separable ODE is one in the general form where M
is solely a function of x and N is solely a function of y. You can see that this
is the case, and the ODE is separable.

The criterion for the equation M(x, y) + N(x, y)dydx = 0 to be exact is for
the partial of M(x, y) with respect to y to be equal to the partial of N(x, y)
with respect to x, or

∂M

∂y
= My = Nx =

∂N

∂x
.

However, whenever a ODE is separable, there is no y in the function M and
there is no x in the function N : An ODE is separable if it can be written

M(x) + N(y)
dy

dx
= 0.

In our case, M(x, y) = M(x) = −x2, and N(x, y) = N(y) = 1− y2. Thus

My = 0 = Nx

and the ODE is exact.

Note. Separable first-order ODEs are ALWAYS exact. But many exact ODEs
are NOT separable.

Thus there exists a function ϕ(x, y) which solves the ODE implicitly, and
whose partials are the functions M and N . To solve, identify the partial of
ϕ with respect to x with M and integrate with respect to x (to recover ϕ):

∂ϕ

∂x
= −x2, and ϕ(x, y) =

∫
∂ϕ

∂x
dx =

∫
(−x2) dx = −x

3

3
+ h(y).

So we now have at least some information about the form of the function
ϕ(x, y).

Question 1. Why is the constant of integration here the function h(y)? This
is a very important question!

Now if we take our form for ϕ(x, y) = −x3

3 +h(y), and take the partial with
respect to y, we get

∂ϕ

∂y
(x, y) =

∂

∂y

[
−x

3

3
+ h(y)

]
= 0 + h′(y).

But the partial of ϕ with respect to y is also precisely the function N(y) =
1− y2. Hence we equate the two

h′(y) = 1− y2.
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Thus using Calculus II, we can find the form for h(y): We get h(y) = y− y3

3 ,
so that

ϕ(x, y) = −x
3

3
+ y − y3

3
.

Finally, the entire original ODE M(x, y) + N(x, y)dydx = 0 is simply a re-
statement that the total derivative with respect to the independent variable
x, assuming y is an implicit function of x, is zero. This happens along the
level curves of ϕ(x, y):

d

dx
ϕ(x, y(x)) = 0 =

∂ϕ

∂x
+

∂ϕ

∂y

dy

dx
= −x2 + (1− y2)

dy

dx
.

Thus the general solution to the original ODE is

ϕ(x, y) = C = −x
3

3
+ y − y3

3
,

as before.


