Differential Equations - Singular Solutions

Consider the first-order separable differential equation: $\frac{d y}{d x}=f(y) g(x)$.
We solve this by calculating the integrals: $\int \frac{d y}{f(y)}=\int g(x) d x+C$.

If y_{0} is a value for which $f\left(y_{0}\right)=0$, then $y=y_{0}$ will be a solution of the above differential equation (1). We call the value y_{0} a critical point of the differential equation and $\mathrm{y}=\mathrm{y}_{0}$ (as a constant function of x) is called an equilibrium solution of the differential equation.

If there is $n o$ value of C in the solution formula (2) which yields the solution $\mathrm{y}=\mathrm{y}_{0}$, then the solution $\mathrm{y}=\mathrm{y}_{0}$ is called a singular solution of the differential equation (1).

The "general solution" of (1) consists of the solution formula (2) together with all singular solutions.

Note: by "general solution", I mean a set of formulae that produces every possible solution.

Example 1: Solve: $\quad \frac{d y}{d x}=(y-3)^{2}$.
Solution: $\int \frac{d y}{(y-3)^{2}}=\int d x$. Thus, $\frac{-1}{(y-3)}=x+C ; \quad y-3=\frac{-1}{x+C} ; \quad$ and

$$
\begin{equation*}
y=3-\frac{1}{x+C} \tag{4}
\end{equation*}
$$

where C is an arbitrary constant.
Both sides of the $\mathrm{DE}(3)$ are zero when $\mathrm{y}=3$. No value of C in (4) gives $\mathrm{y}=3$ and thus, the solution $y=3$ is a singular solution.

The general solution of (3) consists of: $y=3-\frac{1}{x+C}$ (C is an arbitrary constant) and $y=3$.

Example 2: Solve: $\quad \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{y}^{2}-4$.
Solution: $\int \frac{d y}{y^{2}-4}=\int d x$. Using partial fractions,
$\int \frac{d y}{y^{2}-4}=\int \frac{d y}{(y-2)(y+2)}=\int \frac{1}{4}\left[\frac{1}{y-2}+\frac{-1}{y+2}\right] d y=\int d x$.
Thus, $\int\left[\frac{1}{y-2}+\frac{-1}{y+2}\right] d y=\int 4 d x$.
Integrating, $\ln (y-2)-\ln (y+2)=4 x+C$.
Taking exponentials, $\frac{y-2}{y+2}=e^{4 x} C_{1}=s \quad$ (say).
Then,

$$
\begin{align*}
y-2 & =s(y+2)=s y+2 s \\
y-s y & =2+2 s \\
y(1-s) & =2+2 s \\
y & =\frac{2+2 s}{1-s} . \\
y & =\frac{2+2 C_{1} e^{4 x}}{1-C_{1} e^{4 x}}, \tag{6}
\end{align*}
$$

Thus,
where C_{1} is an arbitrary constant.

Both sides of the DE (5) are zero when $\mathrm{y}= \pm 2$. If we put $\mathrm{C}_{1}=0$ in (6), we obtain the solution: $y=2$. However, no value of C_{1} in (6) gives $y=-2$ and thus, the solution $y=-2$ is a singular solution.

The general solution of (5) consists of:

$$
\mathrm{y}=\frac{2+2 \mathrm{C}_{1} \mathrm{e}^{4 \mathrm{x}}}{1-\mathrm{C}_{1} \mathrm{e}^{4 \mathrm{x}}}\left(\mathrm{C}_{1} \text { is an arbitrary constant }\right) \text { and } \mathrm{y}=-2 .
$$

