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A common biological model for understanding the possible interaction between 2 species
in a closed environment that interact only in their competition for food. Not that one tends
to eat the other. More like two herbivores both competing for limited food supplies. If two
species did not interact at all, their respective population equations would fit the Logistic
Model and be uncoupled:

ẋ = x(α1 − β1x)

ẏ = y(α2 − β2y)

where α1, α2, β1, β2 > 0 are positive constants. We can model a simple interaction between
these two species by adding in a cross-term, negative in sign (why?) and scaled by yet
another parameter. We get:

ẋ = x(α1 − β1x− γ1y)

ẏ = y(α2 − β2y − γ2x)

where now all α1, α2, β1, β2, γ1, γ2 > 0 are again positive constants. What are the effects
of these added terms? How may steady-state solutions (long-term behaviors where the
populations of the species do not change over time)? Let’s look at these models for a few
parameter assignments to see. Do not worry so much about just how modelers came up with
this idea of simply adding a term. Let’s focus on the solutions for now.

Here are two sets of parameter assignments from Section 9.4:

(1) Let α1 = β1 = γ1 = 1, α2 = .75, β2 = 1 and γ2 = .5. The system is then

ẋ = x(1− x− y)

ẏ = y(.75− y − .5x).

(2) Let α1 = β1 = γ1 = 1, α2 = .5, β2 = .25 and γ2 = .75. The system is now

ẋ = x(1− x− y)

ẏ = y(.5− .25y − .75x).

Look at the slope fields for these two systems on the next two pages and try to identify
the differences between these two.

Some questions:

Question 1. Where are the critical points in these systems?
1
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(1) Here, we solve the system

0 = x(1− x− y)

0 = y(.75− y − .5x).

Of course the origin a = (0, 0) is one solution. But so are b = (0, .75), c = (1, 0),
and d = (.5, .5) (Verify that you know how to find these!).

(2) In this case, the system is

0 = x(1− x− y)

0 = y(.5− .25y − .75x).

Again, we have e = (0, 0). The others are f = (0, 2), g = (1, 0), and h = (.5, .5).
See these?

Question 2. What are the type and stability of each of these equilibria?
• First note that, for any values of the parameters, the functions F (x, y) = x(α1−
β1x− γ1y) and G(x, y) = y(α2 − β2y − γ2x) are simply polynomials in x and y,
and hence by the proposition we did in class, as long as the determinant of the
matrix

A =

[ ∂F
∂x

(x0, y0)
∂F
∂y

(x0, y0)
∂G
∂x

(x0, y0)
∂G
∂y

(x0, y0)

]
=

[
α1 − 2β1x0 − γ1y0 −γ1x0

−γ2y0 α2 − 2β2y0 − γ2x0

]
,

where (x0, y0) is a fixed point, is not 0, the system is almost linear at (x0, y0).
(1) In our first case, we have

A =

[
1− 2x0 − y0 −x0
−.5y0 .75− 2y0 − .5x0

]
,

and at the four critical points, we have

Aa =

[
1 0
0 .75

]
, Ab =

[
.25 0
−.375 −.75

]
Ac =

[
−1 −1
0 .25

]
, Ad =

[
−.5 −.5
−.25 0

]
.

None of these have determinant 0, so the system is almost linear at all of these
equilibria. The eigenvalues tell us that the corresponding linear systems have a
source at a, saddles at both b and c, and a sink at d. (Verify this!) By The
Stability Theorem we did in class, the nonlinear equilibria will also have these
types and their corresponding stability. The ONLY one of these that is stable is
the asymptotically stable sink at a.

(2) Contrast these fixed poitns with those at e, f , g and h. We play the same game,
and we get the matrix

A =

[
1− 2x0 − y0 −x0
−.75y0 .5− .5y0 − .75x0

]
.

Thus we have the four linear systems given by

Ae =

[
1 0
0 .5

]
, Af =

[
−1 0
−1.5 −.5

]
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Ag =

[
−1 −1
0 −.25

]
, Ad =

[
−.5 −.5
−.325 −.125

]
.

Again, calculate the eigenvalues, and you should find that the linear systems
again have an unstable node (a source) at the origin (e), sinks at f and g, and
a saddle at h. All of these are such that the original nolinear equilibria share
these characteristics.

Given all of this data, let’s place the equilibria and think about how the stability of each
would affect the nearby solutions. At the saddles, we would have to find the approximate
directions of linear motion. The non-linear saddles will not have linear motion, but they will
have something similar; a curve with very specific properties, namely that along one curve,
all solution are asymptotic to the equilibrium in forward time. And there will be another
curve where all solutions will be asymptotic to the equilibrium in backward time. All other
nearby solutions eventually veer away from the equilibrium. The curves of forward and
backward asymptotic solutions wind up being tangent at the equilibrium to the directions
of linear travel form the linear saddle at that equilibrium. This give an idea of how the
non-linear saddle is oriented. We have the two hand drawings below. Your homework now is
to go onto JODE, or a similar graphing device, and actually compute slope fields and some
numerical solutions to verify that this is more or less correct.

Last question: Suppose we built a system that had sliders for each of the parameters so
that we could watch how the phase portrait changed as we alter the parameters continuously.
Notice in the two examples above that in both we had α1 = β1 = β2 = γ1 = 1. But in the
first example, we had α2 = 3

4
, β2 = 1 and γ2 = 1

2
, and in the second, α2 = 1

2
, β2 = 1

4
and

γ2 = 3
4
. Imagine if we smoothly slid the values of these parameters from their initial values

to their final values, from one diagram to the second. One way to do this is with a single
slider: δ, going from 0 to 1. We can use a linear parameterization from any vector a ∈ R3

to any other vector b ∈ R3 to “slide” these parameter values, via x = a + δ(b − a). Then
when δ = 0, x = a and when δ = 1, x = b. Here, we do this with the three parameters
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above simultaneously:

α2 =
3

4
+ δ

(
1

2
− 3

4

)
=

3

4
− 1

4
δ =

3− δ
4

β2 = 1 + δ

(
1

4
− 1

)
= 1− 3

4
δ =

4− 3δ

4

γ2 =
1

2
+ δ(

3

4
− 1

2
) =

1

2
+

1

4
δ =

2 + δ

4
.

Given this, we can continuously change the phase portrait and look for places where the
number, type and/or stability of any of the equilibria change. Given the profound differences
between the two phase portraits, we will find something for some intermediate value of rδ.

The Fixed Points, First in this analysis, understand that since we are changing the values
of the parameters continuously, the fixed points (equilibria) will either stay where they are
or move continuously also. So we can track them. We will do this by rewriting the vector
field functions F (x, y) and G(x, y) in terms of δ instead of the parameters: Here, equilibria
are the solutions to the equations

F (x, y) = 0 = x(1− x− y)

G(x, y) = y(α2 − β2y − γ2x)

become

F (x, y) = 0 = x(1− x− y)

G(x, y) = y

(
3− δ

4
− 4− 3δ

4
y − 2 + δ

4
x

)
.

By inspection, we find:

(1) Whenever y = 0, G(x, y) = 0. Hence any equilibria along the x-axis will not depend
on δ for position at all. Hence the equilibria at (0, 0) and (1, 0) do not move for
δ ∈ [0, 1].

(2) For the non-trivial equilibrium along the y-axis, where x = 0 but y 6= 0, F (x, y) = 0
but G(x, y) = 0 only when α2 − β2y = 0, so y = α2

β2
. IN terms of δ, there will be a

critical point for the system when x = 0, and

y =
3−δ
4

4−3δ
4

=
3− δ
4− 3δ

.

(3) Lastly, there seems to persist a critical point in the open first quadrant x, y > 0. This
equilibrium will satisfy both

1− x− y = 0
α2 − β2y − γ2x = 0

}
⇒
{

x+ y = 1
γ2x+ β2y = α2

.

Combining these via y = 1− x, we get

γ2x+ β2(1− x) = α2, or x =
α2 − β2
γ2 − β2

.
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In terms of δ, we get

x =
3−δ
4
− 4−3δ

4
2+δ
4
− 4−3δ

4

=
−1+2δ

4
−2+4δ

4

=
1

2
.

Thus y = 1 − x = 1
2

and we see that the equilibrium strictly in the first quadrant

does not move for δ ∈ [0, 1] and is at
(
1
2
, 1
2

)
.

Thus the four critical points for this model, in terms of δ are

(0, 0), (1, 0),

(
0,

3− δ
4− 3δ

)
, and

(
1

2
,
1

2

)
.

Type and Stability. Now the analysis moves toward a classification of these equilibria for
the various values of δ ∈ [0, 1]. Recall that at any critical point x0 = (x0, y0) of an almost
linear system, we can form the matrix A of an associated linear system, where

A =

[
Fx
∣∣
x0 Fy

∣∣
x0

Gx

∣∣
x0 Gy

∣∣
x0

]
=

[
1− 2x0 − y0 −x0
−γ2y0 α2 − 2β2y0 − γ2x0

]
.

Here, then

A(0,0)(δ) =

[
1 0
0 α2

]
=

[
1 0
0 3−δ

4

]
.

Thus, in this case, r1 = 1 > 0 and r2 = r2(δ) = 3−δ
4

> 0, ∀δ ∈ [0, 1]. By the Hartman-
Grobman Theorem, the equilibrium at the origin is a source for all δ ∈ [0, 1].

At the static fixed point at (1, 0), we have

A(1,0)(δ) =

[
−1 −1
0 α2 − γ2

]
=

[
−1 −1
0 1−2δ

4

]
.

Eigenvalues of A(1,0)(δ) are immediately available to us since the matrix is upper triangular,
so the eigenvalues are the entries on the main diagonal:

r1 = 1, and r2 =
1− 2δ

4
.

One can readily show that, via the eigenvector equation, an eigenvector for r1 = −1 is

v1 =

[
1
0

]
. Along the “other” direction, we have an eigenvalue/eigenvector pair

r2 =
1− 2δ

4
, v2 =

[
1

2δ−5
4

]
.

The interesting effect is at δ = 1
2
, where the non-horizontal eigendirection is seen to slow

to a stop, creating a curve of equilibria emanating from (1, 0). As δ passes through 1
2
, the

eigenvalue r2 goes from positive to negative, and the saddle bifurcates to a sink, passing
through the value where the node is not isolated. This is a planar bifurcation where an
unstable node can become stable.
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Now, for the critical point
(
0, 3−δ

4−3δ

)
, we get

A(0, 3−δ
4−3δ )

(δ) =

[
1− y0 0
γ2y0 α2 − β2y0

]
=

[
1− 3−δ

4−3δ
0

−
(
2+δ
4

) (
3−δ
4−3δ

)
3−δ
4
− 2

(
4−3δ
4

) (
3−δ
4−3δ

) ]
=

[
1−2δ
4−3δ

0(
2+δ
4−3δ

) (
δ−3
4

)
δ−3
4

]
.

Here, the eigenvalues are r1 = 1−2δ
4−3δ

, and r2 = δ−3
4

. For the eigenvector v2 = [v1, v2]
T

corresponding to r2, we have the eigenvector system(
1− 2δ

4− 3δ

)
v1 =

(
δ − 3

4

)
v1(

2 + δ

4

)(
δ − 3

4

)
v1 +

(
δ − 3

4

)
v2 =

(
δ − 3

4

)
v2.

This system is solve by v1 = 0 and v2 is anything non-trivial, so that the vector v2 is along
the y-axis ∀δ ∈ [0, 1].

For r1, eigenvector system is

1− 2δ

4− 3δ
v1 =

1− 2δ

4− 3δ
v1(

2 + δ

4

)(
δ − 3

4

)
v1 +

(
δ − 3

4

)
v2 =

(
1− 2δ

4− 3δ

)
v2.

While this is a fairly messy calculation, we can boil it down to

v1 =
3δ2 − 21δ + 16

(2 + δ)(δ − 3)
v2.

Upon inspection, one can readily see that both components will be non-zero for every δ ∈
[0, 1], except for at one value: δ ∼ .87. At this point, one can show, r1 = r2, and there is
only one eigendirection.

Exercise 1. Establish what is happening for this value of δ at the non-trivial critical point
along the vertical axis.

Lastly, for this case, notice again, that one of the eigenvalues r1 = 0, when δ = 1
2
. This is

precisely another instance of a bifurcation from a saddle to a sink, where one of the eigendi-
rections slows down its repellent motion, stops and then reverses direction. Interesting....

And lastly, Let’s analyze the stability, type and structure of the phase space at the point(
1
2
, 1
2

)
. We have

A( 1
2
, 1
2)(δ) =

[
1− 2x0 − y0 −x0
−γ2y0 α2 − 2β2y0 − γ2x0

]
=

[
−1

2
−1

2

−2+δ
8

3−δ
4
− 4−3δ

4
− 2+δ

8

]
=

[
−1

2
−1

2

−2+δ
8

−4+3δ
8

]
,

with eigenvalues

r = −
(−8 + 3δ)±

√
(−8 + 3δ)2 − (32− 64δ)

16
=

(8− 3δ)±
√

9δ2 + 16δ + 32

16
.
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One can easily see by inspection here that both of the eigenvalues here are real, with one of
them remaining negative for all δ ∈ [0, 1]. The other one, however, is negative on δ ∈

[
0, 1

2

)
,

and positive on δ ∈
[
1
2
, 1
)
, and 0, when δ = 1

2
. This, again, denotes a bifurcation value for

δ, with the equilibrium going from a sink to a saddle.

IN fact, at δ = 1
2
, we have that strange situation where the three non-trivial critical points

all have 0 as an eigenvalue of their linearization. This suggests a curve of critical points
in the phase plane. We can actually of directly to the original differential equation to find
these:

Let δ = 1
2
. Then the critical points are all at

F (x, y) = x(1− x− y) = 0

G(x, y) = y

(
3− 1

2

4
−
(

4− 3
2

4

)
y −

(
2 + 1

2

4

)
x

)
= 0

= y

(
5

8
− 5

8
y − 5

8
x

)
= 0

=
5

8
y(1− x− y) = 0.

At δ = 1
2
, there will be a line of critical points, ranging within the first quadrant along the

line y = 1 − x, from the equilibrium at (1, 0), through the equilibrium at
(
1
2
, 1
2

)
to the the

fixed point at (1, 0). Can you envision this?


