APPLICATION WORKSHEET: RESONANCE

110.302 DIFFERENTIAL EQUATIONS
PROFESSOR RICHARD BROWN

A car supported by a MacPherson strut (shock absorber system) travels on a bumpy road
at a constant velocity v. The equation modeling the motion of the car is

t
(1) 807 + 100002 = 2500 cos (%) :

where x(t) represents the vertical position of the car’s axle relative to its equilibrium position,
and the basic units of measurement are feet and feet per second (this is actually just an
example of a forced, un-damped harmonic oscillator, if that is any help). The constant
numbers above are related to the characteristics of the car and the strut. Note that the
coefficient of time ¢ (inside the cosine) in the forcing term on the right hand side is a
frequency, which in this case is directly proportional to the velocity v.

(a) Find the general solution to this non-homogeneous ODE. Note that your answer will

have a term in it which is a function of v.

(b) Determine the value of v for which the solution is undefined (you should present your
final answer in miles per hour, as opposed to feet per second).

(c) For a set of initial values 2(0) = 0 and 2(0) = 0, graph the solutions for a few values
of v near your answer in part b and not so near. Discuss the differences in these
graphs and the importance of the special value of v in part (b). (Hint: This special
value of v induces what is called resonance in the car).

(d) Write the IVP (the ODE with the initial conditions in part (c)) as a non-homogeneous
first order system of ODEs. We will learn how to solve such a system in time.

Solution.

(a) First, notice that ODE in Equation 1 is a second-order linear nonhomogeneous ODE
with constant coefficients. To find the general solution, we will first find a set of two
linearly independent solutions to the homogeneous version

80z + 10000z = 0.

The characteristic equation for this ODE is then 8072 + 10000 = 0, which is solved
by 7 = 4v/—125 = £5v/5 i. Being purely imaginary (and hence complex), we
can immediately write out the general solution of this homogeneous, linear constant
coefficient second order ODE, and get

z(t) = ¢ cos 5v/5t + ¢5 sin 5v/5t.
The general solution to the original nonhomogeneous ODE is then
z(t) = ¢; cos 5V/5t + ¢y 8in 5V/5t + X (1),

where X () is any solution to Equation 1. To find a suitable representative for X (¢),

we can use the Method of Constant Coefficients:
1
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Choose X (t) = Acos (’”’t). We would normally also include another constant
involving the sine function, but since there is no first derivative in the ODE, there
will not be a sine component (Stop here for a minute to absorb and accept this idea).

Now since X () = —A (7r ) cos (”gt) we can sub these into the ODE to get

T\ 2 vt vt vt
&)(—A(YT)(ms(7;))~+1mMO(Acos<——))-—2&Mcos<7;)
y
(10000 — 80 (7; ) ) Acos ( — 2500 cos (—Wg )

(7T t) 2500 <7Tl/t)
Acos | — 5 COS
6 10000 — 80 (%) 6

A

2500
10000 — 80 (=)

Hence the general solution to Equation 1 is

2500 t
z(t) = ¢; cos 5V/5t + ¢y 8in 5V/5t + 5 COS (ﬂ) .
10000 — 80 (%) 6

(b) You can see how the speed of the car would affect the solution. In fact, there is a
special value of v for which this solution is NOT defined. That is, when 10000 —

80 (%)2 = (. This is solved by

2
10000 = 80 (%”)

10000 7w
80 6
6v/125

= ‘ v = 21.35 feet per second = 14.55 miles per hour ‘

™

(c) Here, we find the particular solution corresponding to the initial conditions z(0) = 0
and ©(0) = 0. For expediency, let’s start with the second one. We calculate:

d 2 t
i(0) = — |e1 cos 5v/5t + ¢ sin 5v/5t + ou0 5 COS <K>
dt 10000 — 80 (Z2)

< 5v/5¢1 sin 5v/5¢ + 5v/5¢s cos 5v/5t — (%) 2500 sin (W—l/t>>

10000 — 80 (2£)? 6
= 5v/5¢; cos 5v/5(0) =

t=0

which implies that co = 0. Thus the solution is now

2500 t
z(t) = ¢1 cos 5V/5t + 5 COS (m/ ) .
10000 — 80 (Z£) 6
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As for the other initial condition, we get
2500 0
2(0) = ¢; cos 5vV/5(0) + 5 COS (mj( ))
10000 — 80 (2¢)
2500
=+ 7 = 0
10000 — 80 (%¢)
—2500
10000 — 80 (=)

Thus our particular solution is

-2 2
z(t) = p00 5 | cos 5V/5t + p00 5 | cos (Lm>
10000 — 80 (%) 10000 — 80 (%¥) 6

o= (10000??23(%5)2> (COS<E%E) _(DS5V@%)

cC1 =

or

What does this solution look like for various values of v? First, think about it.
As the difference between two cosine functions of different frequencies, there will
usually be a periodic pattern that develops. Convince yourself of this. However, as
v approaches the special value which renders the coefficient fraction undefined, the
amplitude of the oscillations grow. As long as we are off this special value, we will
still see periodic behavior. But with the amplitude getting larger and larger, at some
point, the strut will break and the car will become inoperable. We see the graph
near this resonant value of v as a form of constructive interference, the oscillations
getting larger and larger until something breaks. This car speed provides the resonant
frequency at which the car’s vibrations become unbounded. Note here critically, the
even for values near the resonant car speed, the vibrations will be periodic, although
with amplitudes that get much too large for the strut to endure.

On the next page, I plot some graphs of x(t) for various values of v.

Note. Notice the amplitude change in the graphs on the next page as
v gets close to the resonant value, and then again as v gets large.
Watching the vertical azxis scaling.

(d) Written as a system, we get

jl'lzilfg
iy = —125z1 4 2500 cos (%)

or as a matrix ODE:

l i;} ::[-—?25 0 ][ i;} *’l 25000;2(%?) }'
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FIGURE 4. z(t) when v = 30 (left), when v = 50 (center), and when v = 100 (right).



