EXAMPLE: THE WRONSKIAN DETERMINANT OF A SECOND-ORDER, LINEAR HOMOGENEOUS DIFFERENTIAL EQUATION

110.302 DIFFERENTIAL EQUATIONS
PROFESSOR RICHARD BROWN

Given a second order, linear, homogeneous differential equation

\[y'' + p(t)y' + q(t)y = 0, \]

where both \(p(t) \) and \(q(t) \) are continuous on some open \(t \)-interval \(I \), and two solutions \(y_1(t) \) and \(y_2(t) \), one can form a fundamental set of solutions as the linear combination of these two

\[y(t) = c_1y_1(t) + c_2y_2(t) \]

ONLY under the condition that the Wronskian determinant

\[W(y_1, y_2)(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix} \neq 0 \]

for all \(t \in I \). This condition implies that the two differentiable functions \(y_1(t) \) and \(y_2(t) \) are independent; that there does not exist two constants \(k_1, k_2 \in \mathbb{R} \), not both equal to 0, where \(k_1y_1(t) + k_2y_2(t) = 0 \) on \(I \). Then we know that ALL solutions to the ODE will be a linear combination of \(y_1(t) \) and \(y_2(t) \).

We can actually take this further. It turns out that in this situation, and on the interval \(I \), either of two things can happen:

- The Wronskian is always 0 on \(I \) (we say \(W(y_1, y_1) \) is identically 0 on \(I \), or \(W(y_1, y_2) \equiv 0 \) on \(I \), or
- the Wronskian is NEVER 0 on \(I \).

Why? Because of the following:

Theorem. If \(y_1(t) \) and \(y_2(t) \) are two solutions to the ODE \(y'' + p(t)y' + q(t)y = 0 \), where \(p(t) \) and \(q(t) \) are continuous on some open \(t \)-interval \(I \), then

\[W(y_1, y_2)(t) = Ce^{-\int p(t) \, dt} \]

where \(C \) depends on the choice of \(y_1 \) and \(y_2 \), but not on \(t \).

First, some notes:

- If \(y_1(t) \) and \(y_2(t) \) are linearly dependent, then \(C = 0 \).
- If \(y_1(t) \) and \(y_2(t) \) are linearly independent, then \(W(y_1, y_2) \neq 0 \) on ALL of \(I \).
- Linear independence and non-zero Wronskian are the same thing for solutions to these ODEs.
Proof. Since y_1 and y_1 both solve the ODE, we have
\begin{align*}
y_1'' + p(t)y_1' + q(t)y_1 &= 0 \\
y_2'' + p(t)y_2' + q(t)y_2 &= 0.
\end{align*}

Here, multiply the first equation by $-y_2$ and the second by y_1 and then add them together (this will eliminate the coefficient $q(t)$)
\begin{equation*}
\underbrace{(y_1y_2' - y_2y_1')}_{W'(y_1,y_2)} + p(t) \underbrace{(y_1y_2' - y_2y_1')}_{W(y_1,y_2)} = 0,
\end{equation*}

Which leads to a first order differential equation whose variable IS the Wronskian determinant itself (really, the Wronskian is a function of t)
\begin{equation*}
W' + p(t)W = 0.
\end{equation*}

This first order ODE is both linear and separable, and by separation of variables, we get
\begin{equation*}
\frac{W'}{W} = -p(t) \implies \ln |W| = - \int p(t) \, dt + K \implies Ce^{-\int p(t) \, dt}.
\end{equation*}

Hence by the notes above just before the proof, either $C = 0$, and the Wronskian is always 0, and the two solutions are linearly dependent, or $C \neq 0$, and the Wronskian is NEVER 0, and the two solutions are linearly independent.