HOMEWORK PROBLEM SET 6: DUE OCTOBER 12, 2018

110.302 DIFFERENTIAL EQUATIONS PROFESSOR RICHARD BROWN

Question 1. Use Euler's formula to do the following:

- (a) Write $e^{i\pi}$ in the form a + ib.
- (b) Write 2^{2-2i} in the form a + ib.
- (c) Write π^{2i-1} in the form a + ib.
- (d) Show that

$$\cos t = \frac{e^{it} + e^{-it}}{2}$$
, and $\sin t = \frac{e^{it} - e^{-it}}{2i}$.

Question 2. Solve the following:

(a) y'' - 6y' + 9y = 0, y(0) = 0, y'(0) = 2. (b) 9y'' + 9y' - 4y = 0. (c) y'' + 2y' + 6y = 0, y(0) = 2, y'(0) = 4. (d) 2y'' + 2y' + y = 0. (e) 2y'' + 2y' = 0.

(f)
$$y'' = -a(ay + 2y'), a \in \mathbb{R}$$
.

Question 3. For the ODE ay'' + by' + cy = 0, suppose $b^2 - 4ac < 0$, so that the two solutions to the characteristic equation for the ODE are $\lambda \pm i\mu$. Do the following:

- (a) Show that $u(t) = e^{\lambda t} \cos \mu t$ and $v(t) = e^{\lambda t} \sin \mu t$ are, in fact, solutions to the ODE.
- (b) Show that the Wronskian $W(u(t), v(t)) = \mu e^{2\lambda t}$, thereby establishing the linear independence of u(t) and v(t) on all of \mathbb{R} .
- (c) Do the same for the ODE in the case that $b^2 = 4ac$ by showing that $u(t) = e^{-\frac{b}{2a}t}$ and $v(t) = te^{-\frac{b}{2a}t}$ each solve the ODE and are linearly independent of each other as functions.

Question 4. For the IVP $y'' = \frac{-4y-12y'}{9}$, $y(0) = \alpha > 0$, y'(0) = -1, do the following:

- (a) Find all value(s) of α where $\lim_{t\to\infty} y(t) = 0$.
- (b) Find all value(s) of α where y(t) > 0, for all $t \in \mathbb{R}$.
- **Question 5.** Given the following ODEs and the one solution given, write out a full fundamental set of solutions:

(a)
$$t^2y'' + 2ty' = 2y$$
, $t > 0$, $y_1(t) = t$.
(b) $(x-1)y'' - xy' + y = 0$, $x > 1$, $y_1(x) = e^x$.

Question 6. Solve the following using the Undetermined Coefficients Method:

- (a) $y'' + 4y = t^2 + 3e^t$.
- **(b)** $\ddot{x} + 2\dot{x} + 5x = 4e^{-t}\cos 2t$, x(0) = 1, $\dot{x}(0) = 0$.
- (c) $y'' y' 2y = \cosh 2x$. Hint: Write the hyperbolic cosine function as a linear combination of exponentials.