HOMEWORK PROBLEM SET 2: DUE SEPTEMBER 14, 2018

110.302 DIFFERENTIAL EQUATIONS PROFESSOR RICHARD BROWN

Question 1. Solve the following linear differential equations (for the general solution if it does not have initial data, or the particular solution if it is an IVP).

(a)
$$2y' + y = 3t^2$$
.

(b)
$$y' + 2y = te^{-2t}$$
, $y(1) = 0$.

(c)
$$ty' + (t+1)y = t$$
, $t > 0$, $y(\ln 2) = 1$.

Question 2. Solve the linear IVP

$$ty' + (t+1)y = 2te^{-t}, \quad y(1) = a, \quad t > 0,$$

and locate the particular value of $a = a_0$ for which the transition from one type of behavior to another occurs. Describe the behavior of the solution corresponding to a_0 , as well as what happens to solutions for values of a on either side of this value a_0 .

Question 3. For the IVP,

$$y' + \frac{2}{3}y = 1 - \frac{t}{2}, \quad y(0) = y_0,$$

find the value of y_0 for which the solution touches, but does not cross, the *t*-axis.

Question 4. Solve the following separable differential equations by separating the variables

(a)
$$y' = \frac{2x}{1+2y}$$
, $y(0) = 2$. (Note: I want an explicit expression for $y(x)$ here.)

(b)
$$xy' - y = 2x^2y$$
, for $x > 0$. (Note: This ODE is also linear.)

(c)
$$yy' = -2t(1+y^2), y(0) = 1.$$

Question 5. Determine where the solution to the IVP $y' = xy^2 + 2y^2$, y(0) = 1 attains its minimum value.