HOMEWORK PROBLEM SET 13: NOT TO BE HANDED IN.

110.302 DIFFERENTIAL EQUATIONS PROFESSOR RICHARD BROWN

Question 1. For each ODE system, find and classify all equilibria and cycles and draw a phase portrait:

(a)
$$\dot{r} = r(1-r)(r-2)(3-r)(1+r), \quad \dot{\theta} = -1.$$

(b)
$$\dot{r} = r(1-r)^2(r-2), \quad \dot{\theta} = 4.$$

Question 2. Transform the system

$$\dot{x} = x - y - x(x^2 + y^2)$$

$$\dot{y} = x + y - y(x^2 + y^2)$$

into a system in polar coordinates to get $\dot{r} = r(1 - r^2)$ and $\dot{\theta} = 1$.

Question 3. Now for the system

$$\dot{x} = \alpha x - y - x(x^2 + y^2)$$

$$\dot{y} = x + \alpha y - y(x^2 + y^2),$$

where α is a parameter, do the following:

- (a) Show the origin is the only critical point for all values of $\alpha \in \mathbb{R}$.
- (b) Linearize the system at the origin and use it to determine the type and stability of the nonlinear equilibrium. How does this classification depend on α ?
- (c) Transform the system into polar coordinates, and explain how the phase portrait changes as the values of α change. Locate any bifurcation values of α and describe and draw a representative phase portrait on either side of each bifurcation value. (Note that the bifurcation you see here is called a *Poincaré-Andropov-Hopf bifurcation* or simply a *Hopf bifurcation*.)

Question 4. Determine the periodic solutions, if any, of the system

$$\dot{x} = y + \frac{x}{\sqrt{x^2 + y^2}}(x^2 + y^2 - 2), \quad \dot{y} = -x + \frac{y}{\sqrt{x^2 + y^2}}(x^2 + y^2 - 2).$$

Question 5. For the following, find the function that transforms to the expression given:

(a)
$$F(s) = \frac{3}{s^2+4}$$
.

(b)
$$F(s) = \frac{2}{s^2 + 3s - 4}$$
.

(c)
$$F(s) = \frac{4}{(s-1)^3}$$
.

Question 6. For the following, Use the Laplace Transform to solve the following IVPs:

(a)
$$y'' - y' - 6y = 0$$
, $y(0) = 1$, $y'(0) = -1$.

(b)
$$y'' - 4y' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 1$.

(c)
$$y^{(4)} - y = 0$$
, $y(0) = y''(0) = 1$, $y'(0) = y'''(0) = 0$.

Question 7. Find the Laplace transform of the function y(t) that satisfies the IVP

$$y'' + y = \begin{cases} t & 0 \le t < 1\\ 2 - t & 1 \le t < 2\\ 0 & t \ge 2, \end{cases} \quad y(0) = y'(0) = 0.$$

You do not need to find y(t).

Question 8. Sketch g(t) on the interval $t \ge 0$ and find its Laplace Transform:

(a)
$$g(t) = u_1(t) + 2u_2(t) - 6u_4(t)$$
.

(b)
$$g(t) = f(t-2)u_2(t)$$
, where $f(t) = t^2$.

(c)
$$g(t) = u_2(t)(t-3) - (t-2)u_3(t)$$
.

Question 9. Solve the IVPs: [This is optional. But give these a try!]

(a)
$$y'' + 3y' + 2y = h(t)$$
, $y(0) = y'(0) = 0$, $h(t) = \begin{cases} 1 & 0 \le t < 10 \\ 0 & t \ge 10. \end{cases}$

(b)
$$y'' + 2y' + 2y = f(t)$$
, $y(0) = 0$, $y'(0) = 1$, $f(t) = \begin{cases} 1 & \pi \le t < 2\pi \\ 0 & 0 \le t < 10 \text{ and } t \ge 2\pi. \end{cases}$

Question 10. For the given first-order IVPs, do the following: (1) Approximate the solution at t=2 by using Euler's Method with a step size of h=.5, (2) solve the ODE and calculate the difference between your approximate solution and the actual solution.

(a)
$$y' = 3 + t - y$$
, $y(0) = 1$.

(b)
$$y' = 2y - 3t$$
, $y(0) = 1$.

Question 11. Suppose that x(t) solves the ODE $\dot{x} = \sqrt{x+t}$. Use Euler's Method to approximate x(4) knowing x(1) = 3. Use a step size of h = .5.