
110.302 ORDINARY DIFFERENTIAL EQUATIONS

Professor Richard Brown
Existence and Uniqueness worksheet

Consider the first order IVP

(1) ẏ(t) = f(t, y), y(t0) = y0.

As talked about in class, the question of whether Equation 1 has a solution, and when it
has a solution, if it is uniquely defined, is a difficult one in general. However, due to the
following theorem, the properties of f(t, y) at and near the initial point (t0, y0) can ensure
that unique solutions exist:

Theorem 1. Suppose f(t, y) and
∂f

∂y
(t, y) are continuous in some rectangle

R =

{
(t, y) ∈ R2 | α < t < β, γ < y < δ

}
,

containing the initial point (t0, y0). Then, in some interval t0 − h < t < t0 + h contained in
α < t < β, there is a unique solution y = φ(t) of Equation 1.

To give a good sense of why this is true, let’s start with a definition:

Definition 2. An operator is a function whose domain and range are functions.

A good example of this is the derivative operator
d

dx
which acts on all differentiable func-

tions of one independent variable, and takes them to other (in this case, at least) continuous
functions. Think

d

dx
(x2 + sinx) = 2x+ cosx.

There are numerous technical difficulties in defining operators correctly, but for now, simply
accept this general description.

We claim that any possible solution y = φ(t) (if it exists) to Equation 1 must satisfy

(2) φ(t) = y0 +

∫ t

t0

f(s, φ(s)) ds

for all t in some interval containing t0.

Exercise 1. Show that this is true (really, this is very straightforward. Simply take the
derivative of Equation 2, noting that the right-hand side is easy to derive knowing the
Fundamental Theorem of Calculus.)

At this point, existence of a solution to the ODE is assured in the case that f(t, y) is
continuous on R, as the integral in Equation 2 will then exist at least on some smaller
interval t0 − h < t < t0 + h contained inside α < t < β (the reason it may not exist all the
way out to the edge of R? What if the edge of R is an asymptote in the t variable?)
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As for uniqueness, suppose f(t, y) is continuous as above, and consider the following
operator T , which takes a function φ(t) to its image T (φ(t)) defined by

T (φ(t)) = y0 +

∫ t

t0

f(s, φ(s)) ds.

We can stick in many functions for φ(t) and the image will be a different function T (φ(t))
(sometimes, we will simply write T (φ)) which is still a function of t. However, looking back
at Equation 2, if we stick in the function φ(t) which solves our IVP, the image T (φ) should
be the same as φ. In this case, we call such a function a fixed point of T , since T (φ) = φ.

Example 3. Consider the Initial Value Problem y′ = ty, y(0) = 1. This ODE is separable,

and you should verify that the particular solution in y(t) = et
2/2. According to the Existence

and Uniqueness Theorem, this will be the ONLY solution passing through the point (t0, y0) =
(0, 1) in the ty-plane.

If we define the operator T as above, then for THIS ODE, we get f(s, φ(s)) = sφ(s),
t0 = 0, and y0 = 1, and

T (φ) = y0 +

∫ t

t0

f(s, φ(s)) ds = 1 +

∫ t

0

sφ(s) ds.

Let’s input a few functions into this operator and “see” where they go:

• Let φ(t) = 2, a constant: Then T (φ) = T [2], and

T (2) = 1 +

∫ t

0

2s ds = 1 + s2
∣∣∣∣t
0

= 1 + t2.

• Let φ(t) = t2: Then

T (φ) = T
(
t2
)

= 1 +

∫ t

0

s(s2) ds = 1 +

∫ t

0

s3) ds = 1 +
s4

4

∣∣∣∣t
0

= 1 +
t4

4
.

• Let φ(t) = cos t: Then

T (φ) = T (cos t) = 1 +

∫ t

0

s cos s ds

= 1 + s sin s

∣∣∣∣t
0

−
∫ t

0

sin s ds

= 1 + t sin t+ cos t− 1 = t sin t+ cos t.

• Let φ(t) = et: Then

T (φ) = T
(
et
)

= 1 +

∫ t

0

ses ds

= 1 + ses
∣∣∣∣t
0

−
∫ t

0

es ds

= 1 + tet − et + 1 = 2− et + tet.
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• Let φ(t) = et
2/2: Then

T (φ) = T
(
et

2/2
)

= 1 +

∫ t

0

ses
2/2 ds

= 1 + es
2/2

∣∣∣∣t
0

= 1 + et
2/2 − 1 = et

2/2.

This last input function seems to be the only one where T (φ(t)) = φ(t). That is, it is the
only example here of a fixed point for this operator.

Exercise 2. Find ALL fixed points for the derivative operator
d

dx
on the domain R.

Hence, instead of looking for solutions to the IVP, we can instead look for fixed points of
the operator T , since any fixed point for T will also satisfy Equation 2 and hence solve the
IVP. How do we do this? Fortunately, this operator has an interesting property. First, for
T an operator and φ a function, define

T n(φ) =

n times︷ ︸︸ ︷
T (T (· · · (T (φ)) · · · )) .

Incidentally, this is called iterating the function T , and the above expression is called the
nth iterate of φ under T .

Theorem 4. Suppose you have a way to measure the distance between two functions f(t)
and g(t) and call this distance dist(f, g). If an operator T satisfies

dist (T (f), T (g)) ≤ C · dist(f, g), for some 0 < C < 1,

then there is a single function φ that satisfies T (φ) = φ. In addition, this unique fixed point
satisfies

φ = lim
n→∞

T n(g)

for any starting function g(t).

Remark 5. Any operator that satisfies the distance criterion in this theorem is called a
C-contraction, and in essence this theorem is called the Contraction Principle, or the Con-
traction Mapping Theorem; a common tool used in the study of ODEs and Dynamical
Systems.

Remark 6. Though not entirely necessary, it does make the proof easier to suppose that both
f(t, y) and ∂f

∂y
(t, y) are not only continuous on R, but bounded here also. This is because we

can always slightly restrict R at an edge where one of the variables blows up. The proof is
true even in this case. However, it is much easier to see with this restriction. As an example,
let f(t, y) = log y. Here, both f and ∂f

∂y
= 1

y
are continuous on the rectangle −1 < t < 1,

0 < y < 1. However, neither are bounded here. Create a new rectangle R̃ by moving the left

boundary of R slightly to the right; for a small ε > 0, define R̃ to be −1 < t < 1, ε < y < 1.

Here then both f and ∂f
∂y

are continuous and bounded on R̃.
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proof of Theorem 1. Under the supposition that f and ∂f
∂y

are bounded on R, call

M = max
R

∣∣∣∣∂f∂y (t, y)

∣∣∣∣ ,
and choose a small number h = C

M
, where C < 1. Then define a distance within the set of

continuous functions on the closed interval I = [t0 − h, t0 + h] by

dist(g, h) = max
t∈I

∣∣∣∣g(t)− h(t)

∣∣∣∣ .
Then we have

dist (T (g), T (h)) = max
t∈I

∣∣∣∣T (g(t))− T (h(t))

∣∣∣∣(3)

= max
t∈I

∣∣∣∣y0 +

∫ t

t0

f(s, g(s)) ds− y0 −
∫ t

t0

f(s, h(s)) ds

∣∣∣∣(4)

= max
t∈I

∣∣∣∣∫ t

t0

f(s, g(s))− f(s, h(s)) ds

∣∣∣∣(5)

= max
t∈I

∣∣∣∣∣
∫ t

t0

[∫ g(s)

h(s)

∂f

∂y
(s, r) dr

]
ds

∣∣∣∣∣(6)

≤ max
t∈I

∣∣∣∣∫ t

t0

M |g(s)− h(s)| ds
∣∣∣∣(7)

≤ max
t∈I

∫ t

t0

M · dist(g, h) ds(8)

≤ max
t∈I

{
M · dist(g, h) · |t− t0|

}
(9)

Exercise 3. The justifications of going from Step 5 to Step 6 and from Step 6 to Step 7 are
adaptations of major Theorems from Calculus I-II to functions of more than one independent
variable. Find what theorems these are and show that these are valid justifications.

Exercise 4. Justify why the remaining steps are true.

Now notice is the last inequality that since I = [t0 − h, t0 + h], we have that

|t− t0| ≤ h =
c

M
.

Hence

dist (T (g), T (h)) ≤ max
t∈I

{
M · dist(g, h) · |t− t0|

}
= M · dist(g, h) · C

M
= C · dist(g, h).
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Hence T is a C-contraction and there is a unique fixed point φ (which is a solution to the
original IVP) on the interval I. Here

φ(t) = T (φ(t)) = y0 +

∫ t

t0

f(s, φ(s)) ds.

�

As an application, we can actually use this construction to “solve” an ODE:

Example 7. Solve the IVP
y′ = 2t(1 + y), y(0) = 0.

Here, f(t, y) = 2t(1 + y), as well as ∂f
∂y

(t, y) = 2t are both continuous on the whole plane R2.

Hence unique solutions exist everywhere.

To actually find a solution, start with an initial guess to be

φ0(t) = 0.

Notice that this choice of φ0(t) does not solve the ODE. But since the operator T is a
contraction, iterating will lead us to a solution: Define T (φ0(t)) = φ1(t), and similarly,
define

φn(t) = T (φn−1(t)) =

n times︷ ︸︸ ︷
T (T (· · · (T (φ0(t))) · · · )) .

Here

φ1(t) = T (φ0(t)) = y0 +

∫ t

0

2s(1 + φ0(s)) ds =

∫ t

0

2s(1 + 0) ds = t2.

Continuing, we get

φ2(t) = T (φ1(t)) = y0 +

∫ t

0
2s(1 + φ1(s)) ds =

∫ t

0
2s(1 + s2) ds = t2 +

1

2
t4,

φ3(t) = T (φ2(t)) = y0 +

∫ t

0
2s(1 + φ2(s)) ds =

∫ t

0
2s

(
1 + s2 +

1

2
s4
)
ds = t2 +

1

2
t4 +

1

6
t6,

φ4(t) = T (φ3(t)) = y0 +

∫ t

0
2s(1 + φ3(s)) ds =

∫ t

0
2s

(
1 + s2 +

1

2
s4 +

1

6
t6
)
ds = t2 +

1

2
t4 +

1

6
t6 +

1

24
t8.

Exercise 5. Find the pattern and write out a finite series expression for φn(t). Here one
can prove by induction that the pattern you find is the nth iterate function. However, I am
more interested in you “seeing” it right now.

Exercise 6. Find a closed form expression for lim
n→∞

φn(t) and show that it is a solution of

the IVP.


