CHALLENGE PROBLEM SET: WEEK 11

110.302 DIFFERENTIAL EQUATIONS
PROFESSOR RICHARD BROWN

Question 1. For the following systems, find a general solution, draw a direction field and plot
enough trajectories to fully characterize the nature of the solutions to the system.

Question 2. Solve the IVP
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and draw the solution in the phase plane. Also graph z(¢) as a function of ¢.

Question 3. For the following non-autonomous, first-order, homogeneous linear ODE systems,
note that instead of assuming the exponential functions solve the system, note that solutions
of the form x = vt" solve these systems, where the pair r, v are again eigenvalue/eigenvector
pairs of the constant matrix of coefficients A. Use this to solve the system
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Question 4. For the following systems, determine the critical point x(¢) = x°, and then classify its
type and stability by making a change of variables transformation to the system x = x°+u.
Note that in the new variables u, the origin is not the equilibrium. Then sketch a phase
portrait for the original system.
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Question 5. For each system, (1) find all critical points, (2) use a computer or hand draw a
direction field and sketch a few trajectories near the critical points, and (3) determine as
best as one can the type and stability of each critical point.
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Question 6. For each system, (1) find a function H(x,y) = c satisfied by the trajectories, and (2)
plot several level curves of H, indicting the direction of travel for increasing t¢.
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